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The k-valued blocks, Finy,

Definition
Let £ € w\ {0} unless stated otherwise.

(1) Fora: w— k+1 we let supp(a) ={n € w : a(n) # 0}.

Fingy ={a: w — k+1 : supp(a) is finite Ak € range(a)}.
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The k-valued blocks, Finy,

Definition
Let £ € w\ {0} unless stated otherwise.

(1) Fora: w— k+ 1 we let supp(a) ={n € w : a(n) # 0}.
Fing = {a: w — k+ 1 : supp(a) is finite Ak € range(a)}.

(2) Finpy = UV, Fin;.

(3) For a,b € Fing, we let a < b denote supp(a) < supp(b), i.e.,
(Ym € supp(a))(Vn € supp(b))(m < n). A finite or infinite
sequence (a; : @ < m < w) of elements of Finy is in
block-position if for any i < j < m, a; < a;. The set (Finy)“
is the set of w-sequences in block-position, also called block

sequences.



Two operations on Fin;

Definition
(4) For k > 1, a,b € Fing, we define the partial semigroup
operation + as follows: If supp(a) < supp(b), then
a+ b € Fing is defined. We let (a +b)(n) = a(n) + b(n).
Otherwise a + b is undefined. Thus
a+b = a [ supp(a)Ub | supp(b)U0 | (w\(supp(a)Usupp(b))).



Two operations on Fin;

Definition

(4) For k > 1, a,b € Fing, we define the partial semigroup
operation + as follows: If supp(a) < supp(b), then
a+ b € Fing is defined. We let (a +b)(n) = a(n) + b(n).
Otherwise a + b is undefined. Thus
a+b = a [ supp(a)Ub | supp(b)U0 | (w\(supp(a)Usupp(b))).

(5) For any k > 2 we define on Finy the Tetris operation:
T: Fing — Fing_q by T'(a)(n) = max{a(n) — 1,0}.



Generated semigroups

Definition
(6) Let B C Fing be min-unbounded, i.e., contain for any n some
a with supp(a) > n. We let
TFUL(B) ={TY) (b)) + - - - + TV (by,,) :
L ew\{0},by, € B,bpy < -+ < by,
Ji € k,3r < tj, =0}

be the partial subsemigroup of Finy generated by B. We call
B a TFU-set if B = TFU,(B).



The condensation order

Definition

(7) We define the condensation order: @ Ty, b if @ € (TFUg(b))“.



The condensation order

Definition
(7) We define the condensation order: a C;. b if a € (TFUg(b))>.

(8) We define the past -operation: Let a € (Fing)“ and s € Finy.
(apasts) = (a; : i >1p)

with i9 = min{i : supp(a;) > supp(s)}.



A negation of near coherence for not necessarily centred

IEINIES

Definition

1. Two subsets Fi, Fy of [w]* are called nnc, not nearly coherent,
if for any X; € F;, ¢ = 1,2 and any finite-to-one h: w — w
there is Y; C X;, Y; € F;, i = 1,2 such that h[Y1] N A[Y2] = 0.



A negation of near coherence for not necessarily centred

IEINIES

Definition

1.

Two subsets Fi, F; of [w]* are called nnc, not nearly coherent,
if for any X; € F;, ¢ = 1,2 and any finite-to-one h: w — w
there is Y; C X;, Y; € F;, i = 1,2 such that h[Y1] N A[Y2] = 0.

. Let H C (Fing)“ and let £ be a P-point. We say H avoids £

if {supp(a) : @ € H} is nnc to £.



A subspace of (Finy,)“~Fixing PP and R

Definition

We fix parameters as follows. Let k > 1. Fix
Prain, Poax C {1,...,k}. Let

PP ={(i,x) : z € {min,max},i € P,} and let

R={(R,) : 1€ PP}

be a PP-sequence of pairwise nnc Ramsey ultrafilters (pairwise nnc
selective coideals, i.e., happy families, would suffice for the pure
decision property and properness). We also name the end segments
for1 <j<k:

RI{j. .k} ={t,R) : v=(i,x) € PPNi€{j,....k}}.



Happy families — selective coideals

Definition
We call H C [w]¥ a selective coideal if
1. any cofinite subset of w is in H,
2. VX e HY X, Xo(X1UXe =X - X1 € HV Xo € H).

3. For any (A4,, : n < w) such that for any n, A, € H and
Apt+1 € A, there is a diagonal lower bound A € H, i.e.,

Vne A(A\ (n+1) C A,).



Happy families — selective coideals

Definition
We call H C [w]¥ a selective coideal if
1. any cofinite subset of w is in H,
2. VX e HY X, Xo(X1UXe =X - X1 € HV Xo € H).

3. For any (A4,, : n < w) such that for any n, A, € H and
Apt+1 € A, there is a diagonal lower bound A € H, i.e.,

Vne A(A\ (n+1) C A,).

A Ramsey ultrafilter is a selective coideal that is also a filter.



A subspace of (Fin)*: The space (Fing)“(R)

Definition
We let (Fing)“(R) denote the set of Fing-blocksequences a with

the following properties:
» (Vi € Pyin){min(a,'[{i}]) : n € w} € Rimin,
» (Vi € Prax){max(a,[{i}]) : n € w} € Rimax,
(Vs € TFUg(a)) (min(s™'[{1}]) < min(s'[{2}]) < -+~ <
min(s~![{k — 1}] < min(s~ [{k}]) < max(s~[{k})
< max(s '[{k —1}]) < -+ < max(s~'[{1}])).

If (¢,x2) € {1,...,k} x {min, max} \ PP, we leave the term

x(s71[{i}]) out of the order requirement.



We do not localise to a centred set

Lemma

There are C}-incompatible elements in (Finy)*(R). Indeed, there
are a, b € (Fing)*(R) such that forany j =0,...,k — 1 the
Finy,_-block-sequences TU)[a] and TU)[b] are T} j-incompatible.



A common strengthening of a theorem by Gowers and a

theorem by Blass

The special case of PP = {(1, min), (1, max)} was proved by Blass
in 1987, the case PP = () and arbitrary finite k by Gowers in 1992.

Theorem

Let k, PP, R be as above. Let a € (Fing)*(R) and let c be a
colouring of TFUg(a) into finitely many colours. Then there is a
bCya, be (Fing)“(R), such that TFU(b) is c-monochromatic.



Diagonal lower bounds

Lemma
let k, PP, R be as above. Any C,-descending sequence

(€n : n€w) in (Fing)“(R) has a diagonal lower bound
b € (Fing)“(R)

(vn € Lu‘)((l; past bn) Lk Emax(supp(bn))+1)'

such that each b, 1 is an element of {c;, , m : m € w} for some
lp1 > max(supp(bn)) and by is an element of {cyym : M € W}

for some ;.



A k-stack of compact spaces

Y(Fin; (R [ {k+j —1,...,k})) is the set of ultrafilters U over
Fin; such that foranyaec i, ¢ € {1,...,j},

{min(a,'[{€}]) : n cw} € R+k—j,min

and analogously for max.



Galvin—Glazer technique

Definition
For any k > 1, a reservoir of indices PP of the strict form is one of
the following three types: PP = {(i,min), (i,max) : 1 <i < k},
PP ={(i,min) : 1 <i <k}, PP={(i,min) : 1 <i<k}.
Definition and Lemma
Here we let PP be of the strict form. We define + on
(Us_y v(Fing (R [ {k —j +1,....k})))? as follows.

Lo y(Fimg(R [ {k— i+ 1, kD) X y(Fing (R | {k— j+1,..., k}))

— ’y(FinmaX{i’j}(’R I {k —max(i,j) +1,...,k}))

is defined as
U+v :{X C Fingax(i ) (R | {k —max(i, ) +1,...,k})

:{s:{t:s—l—teX}EV}EU}.



A k-sequence of very good idempotent ultrafilters

Lemma
Still PP of the strict form. (Lemma 2.24, Todorcevic, Ramsey
Spaces) Let k, PP, R be as above, with full PP. For any
k>j>1,andac (Fing)“(R) there is an idempotent
U; € y(Fin;(R [ {k+j —1,...,k})) such that for all
1<i<j<k

(1) Uj+U; =U;,

(2) T0-0@) = s

(3) T-1(a@) € Up_iy1.



Stepping up to finite dimensions

Since the space (Fing)“(R) is stable, we can step up the
Milliken—Taylor style to higher finite arities:

Theorem

Letn € w\ {0} and a € (Fing)“(R) and let ¢ be a colouring of
(TFU(a))™ into finitely many colours. Then there is a b Ty, a,
b € (Fing)“(R) such that (TFU(b))" is c-monochromatic.



A useful notion of forcing

Definition

We let k, PP, R be as above, not necessarily strict. In the
Gowers—Matet forcing with R, Mk(ﬁ), the conditions are pairs
(s,¢) such that s € Finy and ¢ € (Fing)“(R) and

supp(s) < supp(co).

The forcing order is: (¢t,0) < (s,a) if t = s+ s’ and s’ € TFU(a)

and b Cy, (@ past s)



A useful notion of forcing

Definition

We let k, PP, R be as above, not necessarily strict. In the
Gowers—Matet forcing with R, Mk(ﬁ), the conditions are pairs
(s,¢) such that s € Finy and ¢ € (Fing)“(R) and

supp(s) < supp(co).

The forcing order is: (¢t,0) < (s,a) if t = s+ s’ and s’ € TFU(a)
and b Cy, (@ past s)

Lemma

My (R) has the pure decision property, i.e., for any ¢ € L(€),
(s,a) € My(R) 3(s,b) < (s,a) ((5,b) IF oV (5,b) IF =p).



Good properties of the reservoirs of pure conditions

Definition
A set H C (Fing)“ is called a Gowers—Matet-adequate family if the
following hold:

1. H is closed Cj-upwards.

2. H is stable, i.e., any Ci-descending w-sequence of members of
H has a C* lower bound in H.

3. H has the Gowers property: If @ € H and TFUg(a) is
partitioned into finitely many pieces then there is some b C, @,

b € H such that TFU(b) is a subset of a single piece of the
partition.



Examples of Gowers—Matet-adequate families

» H = (Fing)*(R), we write M(R) for M(H).
» M(U) for a Gowers-Milliken-Taylor ultrafilter.

» Instead of imposing that min;[a], max;[a] come from happy

families when a € H we could try to use set;(a) for

ie{l,..., k}.



The fate of the R, ,, (i,z) € PP, in VMR

Definition
The i-fibre of the generic real = |J{s | supp(s) : Ja(s,a) € G}

is

U{s : Jda(s,a) € G},
supp(u) is the union of the y;.
Density argument: ji; is not measured by R min, Ri max-
Definition
Let X € [w]¥. We let fx(n) =|X Nn|.



The fate of other ultrafilters in VM(R)

Lemma
Let h: w — w be a finite-to-one function. Let £ and W be

ultrafilters over w such that W, € *rp R, for . € PP. Then for
any (s,a) € M(R), E € € there are b Cj, a, b € (Fing)*(R), and
E'e& E'CFE and W €W such that

(1) h|J{supp(by,) : n € w} NA[E] = 0.

(2) h{J{[min(supp(by,)), max(supp(by,))] : n € w}]
N(h[E']URW]) =0, and
(376) ”_Mk(ﬁ) fsupp(u) [W] = fsupp(u) [E/]



Fruit of conclusion 1 of the lemma

Theorem

(Adaption of a theorem of Eisworth) Let k > 1 and R be as above
and assume that £ is a P-point with £ 2 rp R (i min)> R(jmax) for
any i € Ppin and j € Puax. Then £ continues to generate an

ultrafilter after we force with M(R).



Fruit of conclusion 2 of the lemma

Theorem

Let k > 1 and R be as above and assume

EW 2RB R(imin)» R(jmax) for any i € Puin and j € Prax and let
& be a P-point and W be an ultrafilter over w. Then

Mk(ﬁ') I fsupp(u) (5) = fsupp(u)(w)‘



Start of an (cs) iteration

Now we are concerned with the second iterand. The following

follows from an easy density argument.

Lemma
Let . = (i,x) € PP.

My(R) IF R, U{p} is a filter subbase.



Finding a second iterand

Theorem
Let k, PP, R be as in the non-strict form, . € PP.
M (R) IF(filter((R, U {u;}))™ is a happy family that avoids £
and for v # ./ the family (filter((R, U {u;}))™
is nnc to the family (filter((R, U {uy}))™".

and hence

Mg(R) IFERZ 2 (R, U {ui}) (RS is a Ramsey ultrafilter

that is nnc to £ and for v # J/, R&Y nnc RGY).



Ramsey spaces of names

Lemma

(Existence of positive diagonal lower bounds) Let U be an
Milliken—Taylor ultrafilter, £ be a P-point, ®(U) £Lrp . Let
Q = M(U) and let i be the name for the generic real. Let

X = (X, : n €w) be a sequence of Q-names for elements of

(Fin)¥ such that

QlF(Vnew) (X, e U pwtA Xpt1 £ Xp).



Lemma continued
Then

D= {(t,(s,&)) (5,0 €eQA(Fkew)(Tto <ty < <tp_q € [Fm]]z)

(ts1 <ty =t A (s,a) IF“tg = min(Xo [ )/

/\ liv1 = mln max(ti)—i—l [ /J,) past ti)”)}
i<k B

fulfils

QFDe )" ADC XoA (vt e D)(Dpastt) C Kinax(t)+1)-



A ZFC result

Proposition

Let € be a filter over w, and let V and W be two filters over w that
are not nearly coherent to £. If V is nearly coherent to W, then
there is E € £ such that fg(V)U fe(W) is a filter subbase.



Carrying on in cs limit steps

Theorem

Suppose that P, Rp are as above P, is the countable support limit
of (Pg,My(Rp) : B < ). In VE, for any o € PP, the set of
positive sets

(U Ry ufprih)”

<o

forms a happy family that avoids £ and the happy families are

pairwise nnc.



Near coherence classes in an iteration of length wo

Theorem

Let £ be a P-point and assume CH and let k > 1 and let

PP C {(i,x) : * =min,max,i=1,...,k}. Then there is a
countable support iteration iteration of proper iterands

P = (Po,Mg(Rp) : B < wse,a < ws) that in the extension there
exactly |PP| + 1 near-coherence classes of ultrafilters. Namely, one
class is represented by a P-point of character wy and |PP| classes

represented by the Ramsey ultrafilters

Ri,x = U{Ri,r,a ra< w2}7

(i,z) € PP.



A factorisation

Proposition

We let Qpure = (Fing(R), T) and we let
U={(a,a) : a € Quure}. Then the following holds:

(1) Qpure is w-closed.

(2) M(R) is densely embedded into Qpure * My (U).

(3) Qpure forces that U is a Gowers—Milliken—Taylor ultrafilter
with min;(U) = Rimin and max;(U) = Rjmax-

(4) Qpure forces that ®(U) is nnc to any filter from the ground
model that is nnc R,, . € PP.



Proof of a conjecture of Blass

In 1987 Blass conjectured that the existence of two non-isomorphic
Ramsey ultrafilters does not imply the existence of a
Milliken—Taylor ultrafilter.

Theorem

For any k, PP, R in the forcing extensions from the main theorem,
is there is no Gowers—Milliken—Taylor ultrafilter over Finy for any
K >1.

Reason: If V is an Milliken—Taylor ultrafilter, then this holds for
P,-part in VP for club many o < wsy. Under CH, the core

®(V) N VFe contains a tree of 241 near coherence classes.



