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Ladder system uniformization on trees

Uniformization properties of ladder system colourings have been
extensively studied due to various connections to algebra, in particular
to the Whitehead problem and its relatives [4, 7, 8], to topology [1,
3, 9, 13], and to fundamental questions in combinatorial set theory
[5, 6, 10].

Our current interest lies in understanding a relatively new version of
the uniformization property introduced by Justin Moore, a notion that
played a key role in understanding minimal uncountable linear orders
[6]. Given a tree T of height ω1, we say that a ladder system colouring
(fα)α∈limω1 has a T -uniformization if there is a function ϕ defined on
a pruned, downward closed subtree S of T so that for any s ∈ Sα of
limit height and almost all ξ ∈ domfα, ϕ(s � ξ) = fα(ξ).

In this talk, I will first outline how variations of the diamond prin-
ciple (weak and strong) imply that there are ladder system colourings
without T -uniformizations; as expected, stronger diamonds imply that
we can take care of more trees and find simple colourings without T -
uniformizations. However, rather unexpectedly, we prove that when-
ever ♦+ holds, for any ladder system C there is an Aronszajn tree T so
that any monochromatic colouring of C (i.e. each fα is some constant
function) has a T -uniformization [11].

Second, we look at the existence of T -uniformizations for Suslin
trees T and answering a question of J. Baumgartner [2], I outline why
the existence of a Suslin tree does not necessarily imply that there are
minimal uncountable linear orders other than ω1 and its reverse [12].
It remains open from [2] if ♦ suffices to construct such minimal linear
orders.
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