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Hurewicz spaces and relatives

A topological space X is Menger if for every sequence 〈Un : n ∈ ω〉 of
open covers of X there is a sequence 〈Vn : n ∈ ω〉 such that

Vn ∈ [Un]<ω and {∪Vn : n ∈ ω} is a cover of X.

A topological space X is Hurewicz if for every sequence 〈Un : n ∈ ω〉 of
open covers of X there is a sequence 〈Vn : n ∈ ω〉 such that

Vn ∈ [Un]<ω and {∪Vn : n ∈ ω} is a γ-cover of X.

U is a γ-cover of X if ∀x ∈ X∀∗U ∈ U(x ∈ U).

σ-compact → Hurewicz → Menger → Lindelöf.

Example: ωω is not Menger. Witness:

Un =
{
{x : x(n) = k} : k ∈ ω

}
.

Folklore Fact. For analytic sets of reals Menger is equivalent to

σ-compact.

In L there exists a co-analytic Menger subspace of ωω which is not

σ-compact.
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A useful characterization

Given x, y ∈ ωω, x ≤∗ y means {n : x(n) ≤ y(n)} is co�nite.

Theorem (Hurewicz 1925)

A zero-dimensional Lindelöf space X is Hurewicz i� f [X] is
bounded with respect to ≤∗ for any continuous f : X → ωω.

A zero-dimensional Lindelöf space X is Menger i� f [X] is
non-dominating with respect to ≤∗ for any continuous f : X → ωω.

b is the minimal cardinality of an unbounded subset of ωω. d is the

minimal cardinality of a dominating subset of ωω.

|X| < b→ X is Hurewicz.

|X| < d→ X is Menger.
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Examples under CH.

X ⊂ ωω is a Luzin set if |X| = ω1 and |X ∩M | ≤ ω for any

meager M .

Every Luzin set is Menger because concentrated.

X ⊂ 2ω is a Sierpinski set if |X| = ω1 and |X ∩N | ≤ ω for any

measure 0 set N .

Theorem (Scheepers 1996)

Let P be compact. X ⊂ P is Hurewicz i� for every Gδ-set G ⊃ X
there exists a σ-compact F such that X ⊂ F ⊂ G.

Corollary

Luzin sets are Menger but not Hurewicz. Sierpinski sets are

Hurewicz.

More generally: b-Sierpinski sets are Hurewicz and d-Luzin sets are

Menger.
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ZFC examples

A set X ⊂ ωω is κ-concentrated on a countable Q, if |X| ≥ κ and

|X \ U | < κ for any open U ⊂ ωω containing Q.

If κ ≤ d, then
X ∪Q is Menger.

Fact. There exists a d-concentrate set.

Proof. Fix a dominating {dα : α < d} ⊂ ωω and inductively

construct S = {sα : α < d} ⊂ ω↑ω such that sα 6≤∗ dβ for all

β ≤ α. Viewed as a subspace of (ω + 1)↑ω, S is d-concentrated on

Q = {x ∈ (ω + 1)↑ω : x is eventually ω}. 2

Fact. There exists a b-concentrate set.

Proof. Fix an unbounded B = {bα : α < b} ⊂ ωω such that

bβ ≤∗ bα for all β ≤ α. B is b-concentrated on Q. 2

Nontrivial (Bartoszynski-Shelah): B ∪Q is Hurewicz.

�All b-concentrated sets are Hurewicz� is independent: wrong

under CH, true in the Miller model.
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Mathias forcing for �lters

A subset F of [ω]ω is called a �lter if F contains all co�nite sets,

is

closed under �nite intersections of its elements, and under taking

supersets.

MF consists of pairs 〈s, F 〉 such that s ∈ [ω]<ω, F ∈ F , and
max s < minF . A condition 〈s, F 〉 is stronger than 〈t, U〉 if
F ⊂ U , s is an end-extension of t, and s \ t ⊂ U .

MF is usually called Mathias forcing associated with F .

MF is a natural forcing adding a pseudointersection of F : if G is a

MF -generic, then X =
⋃
{s : ∃F ∈ F(〈s, F 〉 ∈ G)} is almost

contained in any F ∈ F .

Applications: killing mad families, making the ground model reals

not splitting, etc.
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MF and dominating reals

A poset P is said to add a dominating real if in V P there exists

x ∈ ωω such that y ≤∗ x for all ground model y ∈ ωω.

.

Example: Laver forcing, Hechler forcing.

Miller and Cohen forcing do not add dominating reals.

Theorem (Canjar 1988)

d = c implies the existence of an ultra�lter F such that MF does

not add dominating reals. 2

De�nition (Guzman-Hrusak-Martinez)

A �lter F on ω is called Canjar if MF does not add dominating

reals.

Let B be an unbounded subset of ωω. A �lter F on ω is called

B-Canjar if MF adds no reals dominating all elements of B. 2
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MF and dominating reals: continuation

Theorem (Brendle 1998)

1) Every σ-compact �lter is Canjar.

2) (b = c). Let A be a mad family. Then for any unbounded

B = {bα : α < b} ⊂ ωω such that bα ≤∗ bβ for all α < β, in the

extension obtained by adding b many Cohens, there exists a

B-Canjar F ⊃ FA. 2

Theorem (Guzman-Hrusak-Martinez 2013;
Blass-Hrusak-Verner 2011 for ultra�lters)

A �lter F is Canjar i� it is a coherent strong P+-�lter. 2

F is a strong P+-�lter if for every sequence 〈Cn : n ∈ ω〉 of
compact subsets of F+ there exists an increasing sequence

〈kn : n ∈ ω〉 of integers such that if Xn ∈ Cn for all n, then⋃
n∈ω(Xn ∩ [kn, kn+1)) ∈ F+.
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A useful characterization, repeated

Theorem (Hurewicz 1925)

A zero-dimensional Lindelöf space X is Hurewicz i� f [X] is
bounded for any continuous f : X → ωω.

A zero-dimensional Lindelöf space X is Menger i� f [X] is
non-dominating for any continuous f : X → ωω.
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They all studied Menger and Hurewicz �lters :-)

Theorem (Chodounský-Repov²-Z. 2014)

1) F is Canjar i� F has the Menger covering property as a

subspace of P(ω). 2) MF is almost ωω-bounding i� F is

B-Canjar for all unbounded B ⊂ ωω i� F is Hurewicz. 2

Corollary

Let F be an analytic �lter on ω. Then MF does not add a

dominating real i� F is σ-compact. 2
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Menger spaces are D

A space (X, τ) is called a D-space, if for every f : X → τ such

that x ∈ f(x) for all x, there exists a closed discrete D ⊂ X such

that X =
⋃
x∈D f(x).

Problem
Is every regular Lindelöf space a D-space?

Theorem (Aurichi 2010)

Menger spaces are D-spaces.

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in V Fn(µ,2).

Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.

2
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Menger spaces and Tukey order

Let P , Q be directed posets.

Then P ≥T Q if there is a map

φ : P → Q that takes co�nal subsets of P to co�nal subsets of Q.

Theorem (Christensen 1974)

If M is a separable metrizable space, then ωω ≥T K(M) if and
only if M is Polish.

Theorem (Gartside-Mamatelashvili 201?)

Let M be a separable metrizable space. Then K(M) 6≥T K(Q) i�
K(M) is hereditarily Baire.

Question
Is there a ZFC example of a space M such that K(M) is
hereditarily Baire non-Polish?

Yes, by the following

Theorem (Gartside-Medini-Z. 2016)

Let X ⊂ 2ω be Menger non-σ-compact. Then K(2ω \X) is
hereditarily Baire non-Polish.
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Hurewicz spaces and Tukey order

Question (Fremlin 1991)

Is it consistent that there exists an analytic non-Borel X ⊂ 2ω such

that K(Q) ≥T K(X)?

Yes, by the following

Theorem (Gartside-Medini-Z. 2016)

(V=L). There exists an analytic non-Borel X ⊂ 2ω such that

K(Q) >T K(X).

We construct a co-analytic Hurewicz Y ⊂ 2ω such that X = 2ω \ Y
is as required. We use results of Vidnyanszky to make sure that Y
is co-analytic, which extend and unify earlier results of A. Miller.
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Preservation by products

Fact. (CH.) There are two Sierpinski (hence Hurewicz) sets S0, S1
whose product is not Menger.

Proof. Fix a countable dense Q ⊂ 2ω and write

2ω \Q = {xα : α < ω1}.

In the construction of a Sierpinski set by

trans�nite induction at each stage α we can pick a point sα outside

of a given measure zero set Zα ⊂ 2ω. 2ω has a natural structure of

a topological group, and the sum of any two measure 1 sets is the

whole group. Choose s0α, s
1
α ∈ 2ω \ Zα such that s0α + s1α = xα

and siα + {s1−iβ : β < α} ∩Q = ∅. Set Si = {siα : α < ω1}. 2

Problem

I Is it consistent that the product of two metrizable Menger

spaces is Menger?

I Is it consistent that the product of two metrizable Hurewicz

spaces is Hurewicz?

I Is it consistent that the product of two metrizable Hurewicz

spaces is Menger?
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2ω \Q = {xα : α < ω1}. In the construction of a Sierpinski set by

trans�nite induction at each stage α we can pick a point sα outside

of a given measure zero set Zα ⊂ 2ω. 2ω has a natural structure of

a topological group, and the sum of any two measure 1 sets is the

whole group. Choose s0α, s
1
α ∈ 2ω \ Zα such that s0α + s1α = xα

and siα + {s1−iβ : β < α} ∩Q = ∅.
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There are two reasons why a product of Hurewicz spaces X,Y may

fail to be Hurewicz.

X × Y may fail to be a Lindelöf space. This may indeed happen: in

ZFC there are two normal spaces X,Y with a covering property

much stronger than the Hurewicz one such that X × Y is not

Lindelöf (Todorcevic 1995).

X × Y is Lindelöf, e.g., X,Y ⊂ 2ω. This case is sensitive to the

ambient set-theoretic universe: under CH there exists a Hurewicz

space whose square is not Menger. Requires cov(N) = cof(N) as
proved by Scheepers and Tsaban in 2002.

Theorem (Repovs-Z. 2016)

In the Laver model for the consistency of the Borel's conjecture,

the product of any two Hurewicz metrizable spaces has the Menger

property.

As a result, in this model the product of any two Hurewicz spaces

has the Menger property provided that it is Lindelöf

Note: The conclusion doesn't follow from the Borel's Conjecture.
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Weak concentration

De�nition
X is weakly concentrated if for every collection Q ⊂ [X]ω which is

co�nal with respect to inclusion,

and for every function R : Q→ P(X) assigning to each Q ∈ Q a

Gδ-set R(Q) containing Q,

there exists Q1 ∈ [Q]ω1 such that X ⊂
⋃
Q∈Q1

R(Q).

Under CH any subset of 2ω is weakly concentrated. So the notion

might be interesting only under c > ω1.

Lemma

I In the Laver model every Hurewicz subspace of P(ω) is weakly
concentrated.

I If b > ω1, then a product of a weakly concentrated X ⊂ 2ω

and a Hurewicz Y ⊂ 2ω is Menger.
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How concentration works in products

Time permitting, it should be explained on the blackboard why

Hurewicz x concentrated is Menger.
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The last slide

Thank you for your attention.

18 / 18


