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open covers of X there is a sequence (V,, : n € w) such that
YV, € [U,]<% and {UV,, : n € w} is a y-cover of X.

U is a y-cover of X if Vo € XV*U e U(x € U).
o-compact — Hurewicz — Menger — Lindel6f.

Example: w* is not Menger. Witness:
n*{{SCI fk} kew}

Folklore Fact. For analytic sets of reals Menger is equivalent to
o-compact.

In L there exists a co-analytic Menger subspace of w“ which is not
o-compact.
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meager M. Every Luzin set is Menger because concentrated.
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Theorem (Scheepers 1996)

Let P be compact. X C P is Hurewicz iff for every Gs-set G O X
there exists a o-compact I such that X C F C G.

Corollary

Luzin sets are Menger but not Hurewicz. Sierpinski sets are
Hurewicz.

More generally: b-Sierpinski sets are Hurewicz and 0-Luzin sets are
Menger.
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Nontrivial (Bartoszynski-Shelah): B U @ is Hurewicz.

"All b-concentrated sets are Hurewicz" is independent: wrong
under CH, true in the Miller model.
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M is a natural forcing adding a pseudointersection of F: if G is a
M r-generic, then X = |J{s: IF € F((s, F) € G)} is almost
contained in any I’ € F.

Applications: killing mad families, making the ground model reals
not splitting, etc.
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Theorem (Brendle 1998)

1) Every o-compact filter is Canjar.
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Corollary (Hrusak-Martinez 2012)

There exists a mad family A on w such that Mz 4 adds a

dominating real (= F(A) is not Canjar). O
Answers a question of Brendle.

Corollary

A filter F is Canjar iff it is a strong P+ -filter. Oi0/18
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Theorem (Gartside-Mamatelashvili 2017)

Let M be a separable metrizable space. Then KK(M) #r K(Q) iff
IC(M) is hereditarily Baire.

Question

Is there a ZFC example of a space M such that IC(M) is
hereditarily Baire non-Polish?

Yes, by the following

Theorem (Gartside-Medini-Z. 2016)

Let X C 2% be Menger non-o-compact. Then KC(2¥ \ X) is

hereditarily Baire non-Polish. 12718
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Theorem (Gartside-Medini-Z. 2016)
(V=L). There exists an analytic non-Borel X C 2% such that
K(Q) >r K(X).

We construct a co-analytic Hurewicz Y C 2¢ such that X =2¥\Y
is as required. We use results of Vidnyanszky to make sure that Y
is co-analytic, which extend and unify earlier results of A. Miller.

13/18



Preservation by products

Fact. (CH.) There are two Sierpinski (hence Hurewicz) sets Sy, S1
whose product is not Menger.

Proof. Fix a countable dense (Q C 2“ and write

29\ Q = {zq : @ < w1}

14/18



Preservation by products

Fact. (CH.) There are two Sierpinski (hence Hurewicz) sets Sy, S1
whose product is not Menger.

Proof. Fix a countable dense (Q C 2“ and write

2\ @ = {zq : @ <wi}. In the construction of a Sierpinski set by
transfinite induction at each stage a we can pick a point s, outside
of a given measure zero set Z, C 2“.

14/18



Preservation by products

Fact. (CH.) There are two Sierpinski (hence Hurewicz) sets Sy, S1
whose product is not Menger.

Proof. Fix a countable dense (Q C 2“ and write

2\ @ = {zq : @ <wi}. In the construction of a Sierpinski set by
transfinite induction at each stage a we can pick a point s, outside
of a given measure zero set Z, C 2“. 2“ has a natural structure of
a topological group, and the sum of any two measure 1 sets is the
whole group.

14/18



Preservation by products

Fact. (CH.) There are two Sierpinski (hence Hurewicz) sets Sy, S1
whose product is not Menger.

Proof. Fix a countable dense (Q C 2“ and write

2\ @ = {zq : @ <wi}. In the construction of a Sierpinski set by
transfinite induction at each stage a we can pick a point s, outside
of a given measure zero set Z, C 2“. 2“ has a natural structure of
a topological group, and the sum of any two measure 1 sets is the
whole group. Choose s%, sl € 2\ Z, such that 0 + s. =z,

[e2Mnge

and sg+{sé*i:ﬁ<a}ﬂQ:(Z).

14/18



Preservation by products

Fact. (CH.) There are two Sierpinski (hence Hurewicz) sets Sy, S1
whose product is not Menger.

Proof. Fix a countable dense (Q C 2“ and write

2\ @ = {zq : @ <wi}. In the construction of a Sierpinski set by
transfinite induction at each stage a we can pick a point s, outside
of a given measure zero set Z, C 2“. 2“ has a natural structure of
a topological group, and the sum of any two measure 1 sets is the
whole group. Choose s%, sl € 2\ Z, such that 0 + s. =z,

[e2Mnge

andsé+{séﬁi:ﬁ<a}ﬁQ:®.SetSi:{sfl:a<w1}. O

14/18



Preservation by products

Fact. (CH.) There are two Sierpinski (hence Hurewicz) sets Sy, S1
whose product is not Menger.

Proof. Fix a countable dense (Q C 2“ and write

2\ @ = {zq : @ <wi}. In the construction of a Sierpinski set by
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whole group. Choose s%, sl € 2\ Z, such that 0 + s. =z,

[e2Mnge

andsé+{séﬁi:ﬁ<a}ﬁQ:®.SetSi:{sfl:a<w1}. O
Problem

» [s it consistent that the product of two metrizable Menger
spaces is Menger?
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Lindeldf (Todorcevic 1995).

X x Y is Lindeldf, e.g., X,Y C 2%, This case is sensitive to the
ambient set-theoretic universe: under CH there exists a Hurewicz

space whose square is not Menger. Requires cov(N) = cof(N) as
proved by Scheepers and Tsaban in 2002.

Theorem (Repovs-Z. 2016)

In the Laver model for the consistency of the Borel’s conjecture,
the product of any two Hurewicz metrizable spaces has the Menger
property.

As a result, in this model the product of any two Hurewicz spaces
has the Menger property provided that it is Lindelof

Note: The conclusion doesn’t follow from the Borel’s Conjecture.
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Gs-set R(Q) containing @,

there exists Q1 € [Q]*" such that X C [Jpeq, R(Q)-

Under CH any subset of 2¢ is weakly concentrated. So the notion
might be interesting only under ¢ > wy.

Lemma

> In the Laver model every Hurewicz subspace of P(w) is weakly
concentrated.
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cofinal with respect to inclusion,

and for every function R : Q — P(X) assigning to each Q € Q a
Gs-set R(Q) containing @,

there exists Q1 € [Q]*" such that X C [Jpeq, R(Q)-

Under CH any subset of 2¢ is weakly concentrated. So the notion
might be interesting only under ¢ > wy.
Lemma

> In the Laver model every Hurewicz subspace of P(w) is weakly
concentrated.

» If b > w, then a product of a weakly concentrated X C 2%
and a Hurewicz Y C 2% is Menger.
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How concentration works in products

Time permitting, it should be explained on the blackboard why
Hurewicz x concentrated is Menger.
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The last slide

Thank you for your attention.
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