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Thesis. Category theory is an appropriate context
for implementing the Kechris-Pestov-Todorčević
correspondence.
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Outline
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↓
↓ abstract interpretation
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Ramsey property in a category

For k > 2 and A,B,C ∈ Ob(C) write C −→ (B)A
k if:

I hom(A,B) 6= ∅ and hom(B,C) 6= ∅, and
I for every Set-mapping χ : hom(A,C)→ k there is a

C-morphism w : B → C such that |χ(w · hom(A,B))| = 1.

A category C has the Ramsey property if:
for all k > 2 and all A,B ∈ Ob(C) such that hom(A,B) 6= ∅
there is a C ∈ Ob(C) such that C −→ (B)A

k .



Ramsey property in a category

A category C has the dual Ramsey property if Cop has the
Ramsey property.

Recall. The oposite category Cop:
1 objects of Cop are the objects of C;
2 homCop(A,B) = homC(B,A);
3 f · g

in Cop
= g · f

in C

(A
g←− B) · (B f←− C) = A

f ·g←− C



Ramsey property and extremely amenable groups

A. S. KECHRIS, V. G. PESTOV, S. TODORČEVIĆ: Fraı̈ssé limits,
Ramsey theory and topological dynamics of automorphism
groups. GAFA Geometric and Functional Analysis, 15 (2005) 106–189.

Theorem. TFAE for a countable locally finite
ultrahomogeneous first-order structure F :

1 Aut(F ) is extremely amenable
2 Age(F ) has the Ramsey property and consists of rigid

elements.

I A group G is extremely amenable if every continuous
action of G on a compact Hausdorff space X has a
common fixed point.



KPT theory in a category – the setup

Let C be a category and C0 a full subcategory of C such that:

(C1) all morphisms in C are monic (= left cancellable);

(C2) Ob(C0) is a set;

(C3) for all A,B ∈ Ob(C0) the set hom(A,B) is finite;

(C4) for every F ∈ Ob(C) there is an A ∈ Ob(C0) such that
A→ F ;

(C5) for every B ∈ Ob(C0) the set {A ∈ Ob(C0) : A→ B}
is finite.

C0 are (templates of) finite objects in C.

Age(F ) = {A ∈ Ob(C0) : A→ F}.



KPT theory in a category – the setup

Example. Rel(∆)

I objects are all relational structures of type ∆,
I hom(A,B) = embeddings A→ B,
I Rel(∆)0 objects are finite relational structures

R = ({1, . . . ,n},∆R), n > 1.



KPT theory in a category – the setup

Example. Haus
I objects are Hausdorff spaces,
I hom(A,B) = continuous surjective maps A→ B,
I Haus0 objects are finite discrete spaces {1, . . . ,n}, n > 1.

An age of a structure in an op-category will be referred to as
the projective age and denoted by ∂Age(A).

Example. K = Cantor set 2ω.
∂Age(K) = all finite discrete spaces in Hausop.



KPT theory in a category – the setup

Example. OHaus
I objects are all lin ordered Hausdorff spaces,
I hom(A,B) = continuous monotonous surjective maps

A→ B,
I OHaus0 objects are finite chains ({1, . . . ,n},6), n > 1.

Example. K6 = K with the lexicographic order.
∂Age(K6) = all finite chains in OHausop.



Homogeneous objects

F ∈ Ob(C) is homogeneous if for
every A ∈ Age(F ) and every pair of
morphisms e1,e2 : A→ F there is a
g ∈ Aut(F ) such that g · e1 = e2.

F
g // F

A
e1

__

e2

??

Example. Ultrahomogeneous structures in “direct” categories.

Following Irwin and Solecki,
homogeneous structures in an
op-category will be referred to as
projectively homogeneous.

F

q1 �� ��

F
goo

q2����
A

Example. Both K and K6 are projectively homogeneous (each
in its category).



Locally finite objects

F ∈ Ob(C) is locally finite if
1 for every A,B ∈ Age(F ) and every e : A→ F , f : B → F

there are a D ∈ Age(F ), r : D → F , p : A→ D and
q : B → D such that r · p = e and r · q = f , and

2 for every H ∈ Ob(C), r ′ : H → F , p′ : A→ H and
q′ : B → H such that r ′ · p′ = e and r ′ · q′ = f there is an
s : D → H such that the diagram below commutes.

F

A

e ??

B

f__
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Locally finite objects

Example. Every object in Rel(∆) is locally finite.

Locally finite structures in an op-category will be referred to as
projectively locally finite.

Example. Both K and K6 are projectively locally finite (each in
its category).



Finitely separated automorphisms

The automorphisms of F ∈ Ob(C) are finitely separated if the
following holds for all f ,g ∈ Aut(F ):

if f 6= g then there is an A ∈ Age(F ) and an e : A→ F such
that f · e 6= g · e.

Example. Automorphisms of every relational structure are
finitely separated.

Example. The automorphisms of both K and K6 are finitely
separated (each in its category).



The topology generated by the age of an object

F ∈ Ob(C)

For A ∈ Age(F ) and e1,e2 ∈ hom(A,F ) let

NF (e1,e2) = {f ∈ Aut(F ) : f · e1 = e2}.

Lemma. Let F be a locally finite object in C. Then

MF = {NF (e1,e2) : A ∈ Age(F ); e1,e2 ∈ hom(A,F )}

is a base of a topology αF on Aut(F ). If, in addition, the
automorphisms of F are fintely separated, Aut(F ) endowed
with the topology αF is a Hausdorff topological group.



The topology generated by the age of an object

Example. In Rel(∆): αA is the pointwise convergence topology
for every ∆-structure A.

Example. In Hausop: αK = compact-open topology on K.

Example. In OHausop: αK6 = “compact interval-open interval”
topology on K6.
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Theorem. Let F be a homogeneous locally finite object in C
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1 Aut(F ) endowed with αF is extr amenable,
2 Age(F ) has the Ramsey property.



Ramsey property and extreme amenability

Theorem. Let F be a homogeneous locally finite object in C
whose automorphisms are finitely separated. TFAE:

1 Aut(F ) endowed with αF is extr amenable,
2 Age(F ) has the Ramsey property.

Corollary 1. Let F be an ultrahomogeneous relational
structure. Then Aut(F ) with with the pointwise convergence
topology is extremely amenable if and only if Age(F ) has the
Ramsey property.

D. BARTOŠOVÁ: Universal minimal flows of groups of
automorphisms of uncountable structures. Canadian Mathematical

Bulletin, 2012.



Ramsey property and extreme amenability

Theorem. Let F be a homogeneous locally finite object in C
whose automorphisms are finitely separated. TFAE:

1 Aut(F ) endowed with αF is extr amenable,
2 Age(F ) has the Ramsey property.

Example. The automorphism group of every
ultrahomogeneous chain, endowed with the pointwise
convergence topology, is extremely amenable.

For (Q,6): V. G. PESTOV: On free actions, minimal flows and a
problem by Ellis. Transactions of the American Mathematical Society, 350 (1998)

4149–4165.

In general for chains: D. BARTOŠOVÁ: Universal minimal flows
of groups of automorphisms of uncountable structures. Canadian

Mathematical Bulletin, 2012.



Ramsey property and extreme amenability

Theorem. Let F be a homogeneous locally finite object in C
whose automorphisms are finitely separated. TFAE:

1 Aut(F ) endowed with αF is extr amenable,
2 Age(F ) has the Ramsey property.

Corollary 2. Let F be a projectively locally finite projectively
homogeneous structure. Then Aut(F ) endowed with the
topology αF is extremely amenable if and only if ∂Age(F ) has
the dual Ramsey property.



Ramsey property and extreme amenability

Theorem. Let F be a homogeneous locally finite object in C
whose automorphisms are finitely separated. TFAE:

1 Aut(F ) endowed with αF is extr amenable,
2 Age(F ) has the Ramsey property.

Corollary 3. Let F be a projectively homogeneous
0-dimensional Hausdorff space. Then Homeo(F ) endowed with
the compact-open topology is extremely amenable if and only if
∂Age(F ) has the dual Ramsey property.

(Cf. D. BARTOŠOVÁ: Universal minimal flows of groups of
automorphisms of uncountable structures. Canadian Mathematical

Bulletin, 2012.)



Ramsey property and extreme amenability

Theorem. Let F be a homogeneous locally finite object in C
whose automorphisms are finitely separated. TFAE:

1 Aut(F ) endowed with αF is extr amenable,
2 Age(F ) has the Ramsey property.

Example. In Hausop: Homeo(K) endowed with the
compact-open topology is not extremely amenable.

Example. In OHausop: Let G be the homeomorphism group of
K6 endowed with αK6 = “compact interval – open interval”
topology. Then G is extremely amenable.



Minimal flows and the expansion property

A. S. KECHRIS, V. G. PESTOV, S. TODORČEVIĆ: Fraı̈ssé limits,
Ramsey theory and topological dynamics of automorphism
groups. GAFA Geometric and Functional Analysis, 15 (2005) 106–189.

Theorem. Let F be a locally finite Fraı̈ssé structure, F∗ a
Fraı̈ssé order expansion of F and X ∗ the set of admissible
linear orders on F. TFAE:

1 X ∗ is a minimal Aut(F)-flow
2 Age(F∗) has the ordering property w.r.t. Age(F).



Minimal flows and the expansion property

L. NGUYEN VAN THÉ: More on the Kechris-Pestov-Todorcevic
correspondence: precompact expansions. Fund. Math. 222 (2013),

19–47.

Theorem. Let F be a locally finite Fraı̈ssé structure, F∗ a
Fraı̈ssé precompact expansion of F and X ∗ the set of
admissible expansions on F. TFAE:

1 X ∗ is a minimal Aut(F)-flow
2 Age(F∗) has the expansion property w.r.t. Age(F).



Minimal flows and the expansion property

Θ = (θi)i<n – a finite relational language

ΩF =
⋃
{hom(A,F ) : A ∈ Ob(C0)}

For F ∈ Ob(C), a Θ-expansion of F is a tuple (F , (ρi)i<n) where
ρi is a finitary relation on ΩF .

Lemma. ΩA is finite for A ∈ Ob(C0).

So, Θ-finite =⇒ these expansions are always precompact.



Minimal flows and the expansion property

C(Θ) – a category of Θ expansions of objects from C:

• objects are Θ-expansions of objects from C;

• f : (F , (ρi)i<n)→ (H, (σi)i<n) is a C(Θ)-morphism if

I f ∈ homC(F ,H), and
I (e0, . . . ,em−1) ∈ ρi ⇒ (f · e0, . . . , f · em−1) ∈ σi , for all i < n.

Age(F , (θi)i<n) has the expansion property w.r.t. Age(F ) if

for every A ∈ Age(F ) there is a B ∈ Age(F ) such that for
all (A, (ρi)i<n), (B, (σi)i<n) ∈ Age(F , (θi)i<n) we have a
morphism (A, (ρi)i<n)→ (B, (σi)i<n) in C(Θ).



Minimal flows and the expansion property

F ∈ Ob(C), G = Aut(F )

EF = {all the tuples (ρi)i<n where ρi ⊆ Ωmi
F }

G acts on EF logically, that is

(ρi)
g
i<n = (ρ

g
i )i<n and

(e0, . . . ,em−1) ∈ ρg
i ⇒ (g−1 · e0, . . . ,g−1 · em−1) ∈ ρi



Minimal flows and the expansion property

Theorem. Let F be a locally finite homogeneous object in C
and let G = Aut(F ). Let (F , (ρi)i<n) be a Θ-expansion of F
which is locally finite in C(Θ). Let XΘ = (ρi)

G
i<n be a G-flow

where the action of G is logical. TFAE:
1 XΘ is a minimal G-flow.
2 Age(F , (ρi)i<n) has the expansion property w.r.t. Age(F ).

Example. Let S be an infinite set, let G = Sym(S) and let
(S,6) be an ultrahomogeneous chain. Then

XΘ = 6G = all lin orders on S

is a minimal G-flow.



Minimal flows and the expansion property

Theorem. Let F be a locally finite homogeneous object in C
and let G = Aut(F ). Let (F , (ρi)i<n) be a Θ-expansion of F
which is locally finite in C(Θ). Let XΘ = (ρi)

G
i<n be a G-flow

where the action of G is logical. TFAE:
1 XΘ is a minimal G-flow.
2 Age(F , (ρi)i<n) has the expansion property w.r.t. Age(F ).

Corollary. Let F be a projectively locally finite projectively
homogeneous object and let G = Aut(F ). Let (F , (ρi)i<n) be a
Θ-expansion of F which is projectively locally finite. Let
XΘ = (ρi)

G
i<n be a G-flow where the action of G is logical.

TFAE:
1 XΘ is a minimal G-flow.
2 ∂Age(F , (ρi)i<n) has the exp prop w.r.t. ∂Age(F ).



Universal minimal flows

A. S. KECHRIS, V. G. PESTOV, S. TODORČEVIĆ: Fraı̈ssé limits,
Ramsey theory and topological dynamics of automorphism
groups. GAFA Geometric and Functional Analysis, 15 (2005) 106–189.

Theorem. Let F be a locally finite Fraı̈ssé structure, F∗ a
Fraı̈ssé order expansion of F and X ∗ the set of admissible
linear orders on F. TFAE:

1 X ∗ is the universal minimal Aut(F)-flow
2 Age(F∗) has the Ramsey property and the ordering

property w.r.t. Age(F).



Universal minimal flows

Theorem. Let F be a locally finite homogeneous object in C
and let G = Aut(F ). Let (F , (ρi)i<n) be a Θ-expansion of F
which is locally finite and homogeneous in C(Θ). Let
XΘ = (ρi)

G
i<n be a G-flow where the action of G is logical.

If XΘ is the universal minimal G-flow then Age(F , (ρi)i<n)
has the Ramsey property and the expansion property
w.r.t. Age(F ).


