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Ramsey-Type problems have been considered both in finite and
infinite combinatorics. In infinite combinatorics most attention has
been payed to partition relations between cardinals assuming the Axiom
of Choice and almost all research dealt with ordinals (We think of
cardinals as initial ordinals here). A notable exception is [7]. There the
authors prove the following theorem.

Theorem. Assume the Axiom of Choice. Then for all order-types ψ
we have ψ 6−→(4, ω∗ + ω)3, ψ 6−→(4, ω + ω∗)3 and ψ 6−→(5, ω∗ + ω ∨
ω + ω∗)3.

Together with the folklore result (using AC) that ψ 6−→(ω, ω∗)2 this
puts things into perspective. It is known that one can have very strong
partition properties in models of ZF violating AC, consider for example
Mathias’s result that ω −→ (ω)ω2 is consistent with ZF—cf. [6] or
Martin’s discovery that AD implies ω1 −→ (ω1)

ω1 which failed to be
published by him (but cf. [2, 3, 4, 5]).

We focus on linear orders of the form 〈α2, <lex〉 for ordinals α
and prove positive and negative partition relations, an example of the
former is the following theorem.

Theorem. It is consistent with ZF that 〈α2, <lex〉 −→ (〈α2, <lex〉)2.

In contrast, here is an example of a negative partition relation.

Theorem. 〈α2, <lex〉 6−→(6, κ∗+κ ∨ 2+κ∗ ∨ κ2 ∨ ωω∗)4 for all initial
ordinals κ and all ordinals α < κ+.
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