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Part |: Finite Union Theorem

Theorem ( Folkman, 1969)

For every pair of positive integers k and c there is integer

F = F(k,c) such that for every c-coloring of the power-set P(X)
of some set X of cardinality > F, there is a family D = (D;)%_, of
pairwise disjoint nonempty subsets of X such that the family

UD)={JDi 0 #1C{1,2,...k}}

iel

of unions is monochromatic.
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Infinite Union Theorem

Theorem (Carlson-Simpson, 1984)

For every finite Souslin measurable coloring of the power-set P(w)
of w, there is a sequence D = (Dy,)p<,, of pairwise disjoint
nonempty subsets of the natural numbers such that the set

UD) = { U D, : M is a non-empty subset ofw}
neM

is monochromatic.
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Dual Ramsey Theorem

Theorem (Carlson-Simpson, 1984)

For every finite Souslin-measurable coloring of the collection
Ul =yl ()

of all infinite families of pairwise disjoint nonempty subsets of w,
there is a family D = {D, : n < w} € U such that

U 1D = {{E,: n<w} eU™ : (vn < w)E, e U(D)}

is monochromatic.
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Part |l: Halpern-Lauchli Theorem

A tree is a partially ordered set (T, <7) such that
Pred¢(T)={se T :s<rt}

is is finite and totally ordered.
We consider only rooted and finitely branching trees with no
maximal nodes.
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is a d-sequence of rooted and finitely branching trees with no
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For a vector tree T = (Ty, ..., T4) we define its level product as

T = J Tu(n) x ... x Ta(n)

n<w

The n-th level of the level product of T is

JA17 \ E 1 x =~ &T(3)
/ \
x — @T(2)
/ - AK x — @T(1)
v A x — @T(0)
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Let T =(Ty,..., Tg4) a vector tree.
For t = (t1,...,ty) and s = (si,...,S4) in ®T, set

t<tsiff g <7, 5 foralli=1,..,d.

For t = (t1,..., tg) in ®T, we define

Succ(T) ={s € QT : t <7 s}
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A sequence D = (Dy, ..., Dy) is called a vector subset of T if

1. if Dj is a subset of T; forall i =1,....,d and
2. L1,(D1) = ... = L1,(Dg).

For a vector subset D of T we define its level product

®D = | J(T1(n) N D) x ... x (T4(n) N Da).

n<w

For t € ®T, a vector subset D of T is t-dense ,

(Vn)(3m)(Vs € ®T(n) N Succr(t)(Is' € ®T(m)N®D) s <t

D is called dense if it is root(®T)-dense.
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Theorem (Halpern—Lauchli, 1966)

Let T be a vector tree. Then for every dense vector subset D of T
and every subset P of ®D, there exists a vector subset D' of D
such that either

(i) ®D' is a subset of P and D' is a dense vector subset of T, or

(i) ®D’ is a subset of P¢ and D' is a t-dense vector subset D' of
T for some t in ®T.
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Strong Subtree

Fix a rooted and finitely branching tree (T, <7) of height w with
no maximal nodes.

A subset S of T is called a strong subtree of T if,

1. S has a minimum.
2. Every level of S is subset of some level of T,

3. For every s in S and t' in ImmSuccr(s) there is unique s in
ImmSuccs(s) with t <7 5.
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Vector Strong subtree

Fix a vector tree T = (Tq, ..., T4). A vector subset S = (51, ..., Sq)
of T is called a
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Vector Strong subtree

Fix a vector tree T = (Tq, ..., T4). A vector subset S = (51, ..., Sq)
of T is called a
vector strong subtree of T whenever

1. S; is a strong subtree of T; for all i =1,...d,
2. L1,(S51) = ... = L7,(5q).

Theorem (Strong Subtree Version of HL)

Let T be a vector tree. Then for every finite coloring of T there
exists a vector strong subtree S of T such that ®S is
monochromatic.
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Part lll: Union Theorem for Trees

Let T be a vector tree.We define

U(T)={U C®T: U has a minimum}.

We let U(T) take its topology from {0, 1}*T.
Let D be a vector subset of T.
A D-subspace of U(T) is a family

U = (Ut)tesd

such that
1. U € U(T) for all t € ®D,
2. UsN Uy =0 for s # t,
3. min Uy =t for all t € QD.
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For a subspace U = (Ut)rewp(u)y We define its span by

U] = { Ju:rc ®D(U)} N U(T).
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If U and U’ are two subspaces of U(T), we say that

U’ is a subspace of U, and write U’ < U, if
[U] C [U].



For a subspace U = (Ut)rewp(u)y We define its span by

U] = { Ju:rc ®D(U)} N U(T).

tel

If U and U’ are two subspaces of U(T), we say that

U’ is a subspace of U, and write U’ < U, if
[U] C [U].

Remark
U’ < U implies that D(U’) is a vector subset of D(U).
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Union Theorem for T

Theorem

Let T be a vector tree and P a Souslin measurable subset of U(T).
Also let D be a dense level vector subset of T and U a D-subspace
of U(T). Then there exists a subspace U’ of U(T) with U’ < U
such that either
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Union Theorem for T

Theorem

Let T be a vector tree and P a Souslin measurable subset of U(T).
Also let D be a dense level vector subset of T and U a D-subspace
of U(T). Then there exists a subspace U’ of U(T) with U’ < U
such that either

(i) [U'] is a subset of P and D(U’) is a dense vector subset of T,
or

(ii) [U'] is a subset of P and D(U’) is a t-dense vector subset of
T for some t in QT.



Consequences



Consequences

Corollary
Let T be a vector tree and let S be a vector strong subtree of T.



Consequences

Corollary

Let T be a vector tree and let S be a vector strong subtree of T.
Let U be an S-subspace of U(T).



Consequences

Corollary
Let T be a vector tree and let S be a vector strong subtree of T.

Let U be an S-subspace of U(T).

Then for every finite Souslin measurable coloring of U(T) there
exist a vector strong subtree S’ of S and an S’-subspace U’ of
U(T) with U' < U such that [U’] is monochromatic.



Consequences

Corollary

Let T be a vector tree and let S be a vector strong subtree of T.
Let U be an S-subspace of U(T).

Then for every finite Souslin measurable coloring of U(T) there
exist a vector strong subtree S’ of S and an S’-subspace U’ of
U(T) with U' < U such that [U’] is monochromatic.

Corollary (Carlson-Simpson, 1984)

For every finite Souslin measurable coloring of P(w) there is a
sequence D = (Dp)p<w of pairwise disjoint subsets of w such that
the set

U(D) = { U D, : M is a non-empty subset ofw}
neM

is monochromatic.



Hales-Jewett Theorem

Theorem (Hales-Jewett, 1963)

Let A be a finite alphabet and let v ¢ N be a variable. Then for
every integer ¢ > 1 there is a number HJ(A, ¢) such that for every
integer N > HJ(A, c) and every c-coloring of the set of A-words of
length N, i.e., the cube AN there is a variable word x(v) of length
N, an element of (AU {v})N \ AN such that the set of all
substitutions

{x[A\] : A € A}

is monochromatic.



Hales-Jewett Theorem

Theorem (Hales-Jewett, 1963)

Let A be a finite alphabet and let v ¢ N be a variable. Then for
every integer ¢ > 1 there is a number HJ(A, ¢) such that for every
integer N > HJ(A, c) and every c-coloring of the set of A-words of
length N, i.e., the cube AN there is a variable word x(v) of length
N, an element of (AU {v})N \ AN such that the set of all
substitutions

{x[A\] : A € A}

is monochromatic.

Theorem (Carlson-Simpson, 1984)

Let \ be a finite alphabet and let v & N\ be a variable. Then for
every finite coloring of the semigroup Wy of all A-words, there is
an infinite sequence (x,(v)) of variable words such that the set

{x0[Ao]” -7 xa[An] i 0 < w, Aoy ..., Ap € A}

is monochromatic.
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Hales-Jewett Theorem for Trees

We fix a vector tree T.
Fix a finite alphabet A.
For m < n< w, set

W(A, T, m,n) = /\®T”m’”),

where @T | [m, n) = UJ”:_; ®T(j).We also set

WA T)= | W(A, T, m,n).

m<n
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Let (vs)scoT be a collection of distinct variables, set of symbols
disjoint from A.

Fix a vector level subset D of T. Let

W, (A, T,D, m,n)

to be the set of all functions

f:@T [ [mn)—ANU{vs:s e @D}
such that

» The set f~1({us}) is nonempty and admits s as a minimum in
®T, for all s € ®D.

» For every s and s’ in ®D, we have

Let(F({us})) = Lot(F ({us })).






For f € W, (A, T,D, m, n), set

ws(f) = D, bot(f) = m and top(f) = n.



For f € W, (A, T,D, m, n), set
ws(f) = D, bot(f) = m and top(f) = n.
Moreover, we set

W, (A, T) = U {WV(/\,T, D,m,n): m< nand
D is a vector level subset of T

with Lv(D) C [m, n)}.

The elements of W, (A, T) are viewed as variable words over the
alphabet A.



For variable words f in W, (A, T) we take substitutions:

For every family a = (as)scgws(r) € A, let

f(a) € W(A, T) be the result of substituting for every s in @ws(f)
each occurrence of vg by as, .



For variable words f in W, (A, T) we take substitutions:

For every family a = (as)scgws(r) € A, let

f(a) € W(A, T) be the result of substituting for every s in @ws(f)
each occurrence of vg by as, .

Moreover, we set
[fla ={f(a): a= (as)se®WS(f) C A},

the constant span of f.
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Subspaces

An infinite sequence X = (f;)n<w in W (A, T) is a subspace, if:
1. bot(fp) =0,
2. bot(fy4+1) = top(fn) for all n < w,

3. Setting D; = {J,,, wsi(f) for all i =1,...,d, where
ws(f) = (ws1(f), ..., wsq(f)), we have that (Dy, ..., Dy) forms
a dense vector subset of T.

For a subspace X = (f;) <. we define

[X]a = { U gq: n<wandgg € [fy]aforallg=0,..., n}.
g=0

For two subspaces X and Y, we write X < Y if [X]a C [Y]a.
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Theorem

Let A\ be a finite alphabet and T a vector tree. Then for every
finite coloring of the set of the constant words W (A, T) over A and
every subspace X of W(A, T) there exists a subspace X' of
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An infinite Hales-Jewett theorem for trees

Theorem

Let A\ be a finite alphabet and T a vector tree. Then for every
finite coloring of the set of the constant words W (A, T) over A and
every subspace X of W(A, T) there exists a subspace X' of

W(A, T) with X" < X such that the set [X'|p is monochromatic.

Remark
This will be used as a pigeonhole principle for its
infinite-dimensional version.
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A Ramsey space of sequences of words

Let W°(A, T), be the set of all sequences (gn)n<w in W(A, T)
such that:

1. bot(go) =0 and
2. bot(gn+1) = topg, for all n < w.

For a subspace X, we set

IXIR = {(gn)n<w € WX(A,T) : (v < w) | g € [XIn.
qg=0

Theorem

Let A be a finite alphabet and T a vector tree. Then for every
finite Souslin measurable coloring of the set W*°(A, T) and every
subspace X of W(A, T) there exists a subspace X' of W(A, T)
with X" < X such that the set [X']3° is monochromatic.
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Higher Dimensions

Theorem (Graham-Rothschild)

For every triple of positive integers k, |, and c there is integer
GR = GR(k, 1, c) such that for every set X of cardinality > GR
and every c-coloring of the family

P(X)
k
of all k-families of pairwise disjoint subsets of X there is a family
D = (D;)!_; of pairwise disjoint nonempty subsets of X such that

the family
U(D)
()

of k-families of pairwise disjoint subsets of
UD) ={Ujc; Di: 0 #1C{1,2,...,1}} is monochromatic.
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Finite Union Theorem for Trees in Dim > 1
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Fix a positive integers b and n.

Let b<" denote the uniformly b-branching tree of height n,

the set of all sequences of length less than n taking values from the
set b= {0,...,b — 1} ordered by the relation C of end-extension.

Let k be another positive integer.
A subset subset T of b<" is a skew subtree of height k if
1. T has a minimum,
2. Every maximal chain in T is of size k,
3. For every non maximal t in T and every s € ImmSuccy<n(t)
there exists unique s’ € ImmSuccy(t) satisfying s C 5.
4. For every £ < k and s, t € T({), we have that s <j t iff
|s| < ltl.
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Skew subtree of height 3



Subspaces of finite dimension > 1

Let
Ub<") = {U C b=": U has a minimum}.



Subspaces of finite dimension > 1

Let
Ub<") = {U C b=": U has a minimum}.

A k-dimensional subspace of U/(b<") is a family of of the form
(Ut)te CU(b™)

such that



Subspaces of finite dimension > 1

Let
Ub<") = {U C b=": U has a minimum}.

A k-dimensional subspace of U/(b<") is a family of of the form
(Ut)te CU(b™)

such that
1. T is a skew subtree of b<" height k,



Subspaces of finite dimension > 1

Let
Ub<") = {U C b=": U has a minimum}.

A k-dimensional subspace of U/(b<") is a family of of the form
(Ut)te CU(b™)

such that
1. T is a skew subtree of b<" height k,
2. UsnUs=0fors#teT,



Subspaces of finite dimension > 1

Let
Ub<") = {U C b=": U has a minimum}.

A k-dimensional subspace of U/(b<") is a family of of the form
(Ut)te CU(b™)

such that
1. T is a skew subtree of b<" height k,
2. UsnUs=0fors#teT,
3. minUg=tforallte T.



Subspaces of finite dimension > 1

Let
Ub<") = {U C b=": U has a minimum}.

A k-dimensional subspace of U/(b<") is a family of of the form
(Ut)te CU(b™)

such that
1. T is a skew subtree of b<" height k,
2. UsnUs=0fors#teT,
3. minUg=tforallte T.
A subspace (Vs)ses is a further subspace of (U;)icT if

(vseS) Vee{lJU::ACT}

teA
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Theorem

For every positive integers ¢, k, |, b with k < | there exists a
positive integer ngo = TT(c, k, I, b) such that

for every integer n > ng and every r-coloring of the k-dimensional
subspaces of U(b="),

there exists a |-dimensional subspace U such that
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Finite Union Theorem for Trees in Dimension k

Theorem

For every positive integers ¢, k, |, b with k < | there exists a
positive integer ngo = TT(c, k, I, b) such that

for every integer n > ng and every r-coloring of the k-dimensional
subspaces of U(b="),

there exists a |-dimensional subspace U such that

the set of all further k-dimensional subspaces of U is
monochromatic.

Remark
The Graham-Rotschild Finite Union Theorem is the case b =1 of
this result.
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Further work
An w-dimensional subspace of (b<“) is a family of of the form

(Ut)teT CU(L™)

such that

1. T is a skew subtree of b<“ height w,

2. UsnUs=0fors#teT,

3. mnUg=tforallte T.
As before an w-dimensional subspace (Vs)scs is a further
subspace of (U;)cT if

(vse$) Vee{|JU::AC T}
teA

Conjecture

For every finite Souslin-measurable coloring of the family of all
w-dimensional subspaces of U(b<“) there is an w-dimensional
subspace (U:)te1 all of whose further w-dimensional subspaces are
of the same color.



