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Part I: Finite Union Theorem

Theorem ( Folkman, 1969)

For every pair of positive integers k and c there is integer
F = F (k , c) such that for every c-coloring of the power-set P(X )
of some set X of cardinality ≥ F , there is a family D = (Di )

k
i=1 of

pairwise disjoint nonempty subsets of X such that the family

U(D) = {
⋃
i∈I

Di : ∅ 6= I ⊆ {1, 2, ..., k}}

of unions is monochromatic.



Part I: Finite Union Theorem

Theorem ( Folkman, 1969)

For every pair of positive integers k and c there is integer
F = F (k , c) such that for every c-coloring of the power-set P(X )
of some set X of cardinality ≥ F , there is a family D = (Di )

k
i=1 of

pairwise disjoint nonempty subsets of X such that the family

U(D) = {
⋃
i∈I

Di : ∅ 6= I ⊆ {1, 2, ..., k}}

of unions is monochromatic.



Infinite Union Theorem

Theorem (Carlson-Simpson, 1984)

For every finite Souslin measurable coloring of the power-set P(ω)
of ω, there is a sequence D = (Dn)n<ω of pairwise disjoint
nonempty subsets of the natural numbers such that the set

U(D) =
{ ⋃

n∈M

Dn : M is a non-empty subset of ω
}

is monochromatic.
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Dual Ramsey Theorem

Theorem (Carlson-Simpson, 1984)

For every finite Souslin-measurable coloring of the collection

U [∞] = U [∞](ω)

of all infinite families of pairwise disjoint nonempty subsets of ω,
there is a family D = {Dn : n < ω} ∈ U [∞] such that

U [∞] � D = {{En : n < ω} ∈ U [∞] : (∀n < ω)En ∈ U(D)}

is monochromatic.



Dual Ramsey Theorem

Theorem (Carlson-Simpson, 1984)

For every finite Souslin-measurable coloring of the collection

U [∞] = U [∞](ω)

of all infinite families of pairwise disjoint nonempty subsets of ω,
there is a family D = {Dn : n < ω} ∈ U [∞] such that

U [∞] � D = {{En : n < ω} ∈ U [∞] : (∀n < ω)En ∈ U(D)}

is monochromatic.



Part II: Halpern-Läuchli Theorem

A tree is a partially ordered set (T ,≤T ) such that

Predt(T ) = {s ∈ T : s <T t}

is is finite and totally ordered.

We consider only rooted and finitely branching trees with no
maximal nodes.
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For n < ω, the nth level of T , is the set

T (n) = {t ∈ T : |Predt(T| = n}.
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For a subset D of T , we define its level set

LT (D) = {n ∈ ω : D ∩ T (n) 6= ∅}
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From now on, fix an integer d ≥ 1.

A vector tree
T = (T1, ...,Td)

is a d-sequence of rooted and finitely branching trees with no
maximal nodes.
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For a vector tree T = (T1, ...,Td) we define its level product as

⊗T =
⋃
n<ω

T1(n)× ...× Td(n)

The n-th level of the level product of T is

⊗T(n) = T1(n)× ...× Td(n).

T1 TdT2

× → ⊗T(3)

× → ⊗T(2)

× → ⊗T(1)

× → ⊗T(0)
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Let T = (T1, ...,Td) a vector tree.

For t = (t1, ..., td) and s = (s1, ..., sd) in ⊗T, set

t ≤T s iff ti ≤Ti
si for all i = 1, ..., d .

For t = (t1, ..., td) in ⊗T, we define

Succt(T) = {s ∈ ⊗T : t ≤T s}
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A sequence D = (D1, ...,Dd) is called a vector subset of T if

1. if Di is a subset of Ti for all i = 1, ..., d and

2. LT1(D1) = ... = LTd
(Dd).

For a vector subset D of T we define its level product

⊗D =
⋃
n<ω

(T1(n) ∩ D1)× ...× (Td(n) ∩ Dd).

For t ∈ ⊗T, a vector subset D of T is t-dense ,

(∀n)(∃m)(∀s ∈ ⊗T(n) ∩ SuccT(t)(∃s′ ∈ ⊗T(m) ∩ ⊗D) s ≤T s′.

D is called dense if it is root(⊗T)-dense.
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Theorem (Halpern–Läuchli, 1966)

Let T be a vector tree. Then for every dense vector subset D of T
and every subset P of ⊗D, there exists a vector subset D′ of D
such that either

(i) ⊗D′ is a subset of P and D′ is a dense vector subset of T, or

(ii) ⊗D′ is a subset of Pc and D′ is a t-dense vector subset D′ of
T for some t in ⊗T.
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Strong Subtree

Fix a rooted and finitely branching tree (T ,≤T ) of height ω with
no maximal nodes.

A subset S of T is called a strong subtree of T if,

1. S has a minimum.

2. Every level of S is subset of some level of T ,

3. For every s in S and t ′ in ImmSuccT (s) there is unique s ′ in
ImmSuccS(s) with t ≤T s ′.
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Vector Strong subtree

Fix a vector tree T = (T1, ...,Td).

A vector subset S = (S1, ...,Sd)
of T is called a
vector strong subtree of T whenever

1. Si is a strong subtree of Ti for all i = 1, ...d ,

2. LT1(S1) = ... = LTd
(Sd).

Theorem (Strong Subtree Version of HL)

Let T be a vector tree. Then for every finite coloring of ⊗T there
exists a vector strong subtree S of T such that ⊗S is
monochromatic.
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Part III: Union Theorem for Trees

Let T be a vector tree.We define

U(T) = {U ⊆ ⊗T : U has a minimum}.

We let U(T) take its topology from {0, 1}⊗T.
Let D be a vector subset of T.
A D-subspace of U(T) is a family

U = (Ut)t∈⊗D

such that

1. Ut ∈ U(T) for all t ∈ ⊗D,

2. Us ∩ Ut = ∅ for s 6= t,

3. min Ut = t for all t ∈ ⊗D.
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For a subspace U = (Ut)t∈⊗D(U) we define its span by

[U] =
{⋃

t∈Γ

Ut : Γ ⊆ ⊗D(U)
}
∩ U(T).

If U and U′ are two subspaces of U(T), we say that

U′ is a subspace of U, and write U′ ≤ U, if
[U′] ⊆ [U].

Remark
U′ ≤ U implies that D(U′) is a vector subset of D(U).
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Union Theorem for T

Theorem
Let T be a vector tree and P a Souslin measurable subset of U(T).
Also let D be a dense level vector subset of T and U a D-subspace
of U(T).Then there exists a subspace U′ of U(T) with U′ ≤ U
such that either

(i) [U′] is a subset of P and D(U′) is a dense vector subset of T,
or

(ii) [U′] is a subset of Pc and D(U′) is a t-dense vector subset of
T for some t in ⊗T.
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Consequences

Corollary

Let T be a vector tree and let S be a vector strong subtree of T.
Let U be an S-subspace of U(T).
Then for every finite Souslin measurable coloring of U(T) there
exist a vector strong subtree S′ of S and an S′-subspace U′ of
U(T) with U′ ≤ U such that [U′] is monochromatic.

Corollary (Carlson-Simpson, 1984)

For every finite Souslin measurable coloring of P(ω) there is a
sequence D = (Dn)n<ω of pairwise disjoint subsets of ω such that
the set

U(D) =
{ ⋃

n∈M

Dn : M is a non-empty subset of ω
}

is monochromatic.
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Hales-Jewett Theorem

Theorem (Hales-Jewett, 1963)

Let Λ be a finite alphabet and let v 6∈ Λ be a variable. Then for
every integer c ≥ 1 there is a number HJ(Λ, c) such that for every
integer N ≥ HJ(Λ, c) and every c-coloring of the set of Λ-words of
length N, i.e., the cube ΛN there is a variable word x(v) of length
N, an element of (Λ ∪ {v})N \ ΛN such that the set of all
substitutions

{x [λ] : λ ∈ Λ}
is monochromatic.

Theorem (Carlson-Simpson, 1984)

Let Λ be a finite alphabet and let v 6∈ Λ be a variable. Then for
every finite coloring of the semigroup WΛ of all Λ-words, there is
an infinite sequence (xn(v)) of variable words such that the set

{x0[λ0]_ · · ·_ xn[λn] : n < ω, λ0, ..., λn ∈ Λ}

is monochromatic.
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Hales-Jewett Theorem for Trees

We fix a vector tree T.
Fix a finite alphabet Λ.
For m < n < ω, set

W(Λ,T,m, n) = Λ⊗T�[m,n),

where ⊗T � [m, n) =
⋃n−1

j=m⊗T(j).We also set

W(Λ,T) =
⋃

m≤n

W(Λ,T,m, n).
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Let (vs)s∈⊗T be a collection of distinct variables, set of symbols
disjoint from Λ.

Fix a vector level subset D of T. Let

Wv (Λ,T,D,m, n)

to be the set of all functions

f : ⊗T � [m, n)→ Λ ∪ {vs : s ∈ ⊗D}
such that

I The set f −1({us}) is nonempty and admits s as a minimum in
⊗T, for all s ∈ ⊗D.

I For every s and s′ in ⊗D, we have
L⊗T(f −1({us})) = L⊗T(f −1({us′})).



Let (vs)s∈⊗T be a collection of distinct variables, set of symbols
disjoint from Λ.

Fix a vector level subset D of T. Let

Wv (Λ,T,D,m, n)

to be the set of all functions

f : ⊗T � [m, n)→ Λ ∪ {vs : s ∈ ⊗D}
such that

I The set f −1({us}) is nonempty and admits s as a minimum in
⊗T, for all s ∈ ⊗D.

I For every s and s′ in ⊗D, we have
L⊗T(f −1({us})) = L⊗T(f −1({us′})).



Let (vs)s∈⊗T be a collection of distinct variables, set of symbols
disjoint from Λ.

Fix a vector level subset D of T. Let

Wv (Λ,T,D,m, n)

to be the set of all functions

f : ⊗T � [m, n)→ Λ ∪ {vs : s ∈ ⊗D}
such that

I The set f −1({us}) is nonempty and admits s as a minimum in
⊗T, for all s ∈ ⊗D.

I For every s and s′ in ⊗D, we have
L⊗T(f −1({us})) = L⊗T(f −1({us′})).



Let (vs)s∈⊗T be a collection of distinct variables, set of symbols
disjoint from Λ.

Fix a vector level subset D of T. Let

Wv (Λ,T,D,m, n)

to be the set of all functions

f : ⊗T � [m, n)→ Λ ∪ {vs : s ∈ ⊗D}
such that

I The set f −1({us}) is nonempty and admits s as a minimum in
⊗T, for all s ∈ ⊗D.

I For every s and s′ in ⊗D, we have
L⊗T(f −1({us})) = L⊗T(f −1({us′})).



1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1
1

1
1

1
1

1

1

1

1
1

2

2

2

2

2

2
2

2
2

2

2
2

2

2
2

s1

s2

s3

s4

s5

s6

vs1

vs1

vs1

vs2

vs2

vs2

vs3

vs3

vs3

vs4

vs4

vs5

vs5

vs6

vs6

vs6



For f ∈Wv (Λ,T,D,m, n), set

ws(f ) = D,bot(f ) = m and top(f ) = n.

Moreover, we set

Wv (Λ,T) =
⋃{

Wv (Λ,T,D,m, n) : m ≤ n and

D is a vector level subset of T

with LT(D) ⊂ [m, n)
}
.

The elements of Wv (Λ,T) are viewed as variable words over the
alphabet Λ.
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For variable words f in Wv (Λ,T) we take substitutions:
For every family a = (as)s∈⊗ws(f ) ⊆ Λ, let
f (a) ∈W(Λ,T) be the result of substituting for every s in ⊗ws(f )
each occurrence of vs by as, .

Moreover, we set

[f ]Λ = {f (a) : a = (as)s∈⊗ws(f ) ⊆ Λ},

the constant span of f.
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Subspaces

An infinite sequence X = (fn)n<ω in Wv (Λ,T) is a subspace, if:

1. bot(f0) = 0,

2. bot(fn+1) = top(fn) for all n < ω,

3. Setting Di =
⋃

n<ω wsi (f ) for all i = 1, ..., d , where
ws(f ) = (ws1(f ), ...,wsd(f )), we have that (D1, ...,Dd) forms
a dense vector subset of T.

For a subspace X = (fn)n<ω we define

[X ]Λ =
{ n⋃

q=0

gq : n < ω and gq ∈ [fq]Λ for all q = 0, ..., n
}
.

For two subspaces X and Y , we write X ≤ Y if [X ]Λ ⊆ [Y ]Λ.
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An infinite Hales-Jewett theorem for trees

Theorem
Let Λ be a finite alphabet and T a vector tree. Then for every
finite coloring of the set of the constant words W(Λ,T) over Λ and
every subspace X of W(Λ,T) there exists a subspace X ′ of
W(Λ,T) with X ′ ≤ X such that the set [X ′]Λ is monochromatic.

Remark
This will be used as a pigeonhole principle for its
infinite-dimensional version.
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A Ramsey space of sequences of words

Let W∞(Λ,T), be the set of all sequences (gn)n<ω in W(Λ,T)
such that:

1. bot(g0) = 0 and

2. bot(gn+1) = topgn for all n < ω.

For a subspace X , we set

[X ]∞Λ = {(gn)n<ω ∈W∞(Λ,T) : (∀n < ω)
n⋃

q=0

gq ∈ [X ]Λ.

Theorem
Let Λ be a finite alphabet and T a vector tree. Then for every
finite Souslin measurable coloring of the set W∞(Λ,T) and every
subspace X of W(Λ,T) there exists a subspace X ′ of W(Λ,T)
with X ′ ≤ X such that the set [X ′]∞Λ is monochromatic.
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Higher Dimensions

Theorem (Graham-Rothschild)

For every triple of positive integers k , l , and c there is integer
GR = GR(k , l , c) such that for every set X of cardinality ≥ GR
and every c-coloring of the family(P(X )

k

)
of all k-families of pairwise disjoint subsets of X there is a family
D = (Di )

l
i=1 of pairwise disjoint nonempty subsets of X such that

the family (U(D)

k

)
of k-families of pairwise disjoint subsets of
U(D) = {⋃i∈I Di : ∅ 6= I ⊆ {1, 2, ..., l}} is monochromatic.
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Finite Union Theorem for Trees in Dim > 1

Fix a positive integers b and n.
Let b<n denote the uniformly b-branching tree of height n,
the set of all sequences of length less than n taking values from the
set b = {0, ..., b − 1} ordered by the relation v of end-extension.

Let k be another positive integer.
A subset subset T of b<n is a skew subtree of height k if

1. T has a minimum,

2. Every maximal chain in T is of size k,

3. For every non maximal t in T and every s ∈ ImmSuccb<n(t)
there exists unique s ′ ∈ ImmSuccT (t) satisfying s v s ′.

4. For every ` < k and s, t ∈ T (`), we have that s <lex t iff
|s| < |t|.
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2. Every maximal chain in T is of size k,

3. For every non maximal t in T and every s ∈ ImmSuccb<n(t)
there exists unique s ′ ∈ ImmSuccT (t) satisfying s v s ′.

4. For every ` < k and s, t ∈ T (`), we have that s <lex t iff
|s| < |t|.
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Skew subtree of height 3



Subspaces of finite dimension > 1

Let
U(b<n) = {U ⊆ b<n : U has a minimum}.

A k-dimensional subspace of U(b<n) is a family of of the form

(Ut)t∈T ⊆ U(b<n)

such that

1. T is a skew subtree of b<n height k ,

2. Us ∩ Ut = ∅ for s 6= t ∈ T ,

3. min Ut = t for all t ∈ T .

A subspace (Vs)s∈S is a further subspace of (Ut)t∈T if

(∀s ∈ S) Vs ∈ {
⋃
t∈A

Ut : A ⊆ T}.
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Finite Union Theorem for Trees in Dimension k

Theorem
For every positive integers c, k , l , b with k ≤ l there exists a
positive integer n0 = TT (c, k , l , b) such that
for every integer n ≥ n0 and every r -coloring of the k-dimensional
subspaces of U(b<n),
there exists a l-dimensional subspace U such that
the set of all further k-dimensional subspaces of U is
monochromatic.

Remark
The Graham-Rotschild Finite Union Theorem is the case b = 1 of
this result.
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Further work

An ω-dimensional subspace of U(b<ω) is a family of of the form

(Ut)t∈T ⊆ U(b<ω)

such that

1. T is a skew subtree of b<ω height ω,

2. Us ∩ Ut = ∅ for s 6= t ∈ T ,

3. min Ut = t for all t ∈ T .

As before an ω-dimensional subspace (Vs)s∈S is a further
subspace of (Ut)t∈T if

(∀s ∈ S) Vs ∈ {
⋃
t∈A

Ut : A ⊆ T}.

Conjecture

For every finite Souslin-measurable coloring of the family of all
ω-dimensional subspaces of U(b<ω) there is an ω-dimensional
subspace (Ut)t∈T all of whose further ω-dimensional subspaces are
of the same color.
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