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FACT. (Folklore??)

If all free sequences in a topological space X have compact closure
then X is compact.

For a property P of subspaces of X, we say that X is P-bounded iff the
closure in X of any subspace with P is compact.

So, F-bounded (and hence D-bounded) spaces are compact.

COROLLARY

Any non-isolated point of a compact T, space is discretely touchable,
i.e. the accumulation point of a discrete set.
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DTTW

Dow-Tkachenko-Tkachuk-Wilson, TOPOLOGIES GENERATED BY
DISCRETE SUBSPACES, Glasnik Mat., 2002 :

A space X is discretely generated iff x € Aimplies x € D for some
D c A discrete. X is weakly discretely generated iff A C X not closed
implies D £ A for some D C A discrete.

So, compact T, spaces are weakly discretely generated.
Also, countably tight compact T, spaces are discretely generated.
EXAMPLE 1.

There is a compact T, space which is not discretely generated
(if there is an L-space).

v

EXAMPLE 2.

Consistently, there is an w-bounded (hence countably compact)
reqular space with a discretely untouchable point.
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THEOREM (J-Shelah)

For every cardinal x, there is a x-bounded 0-dimensional T, space with
a discretely untouchable point.

DEFINITION. Col(\, k) : Thereis ¢ : [\]> — 2 s.t., given ¢ < kT and
h:¢&x & — 2, forany disjoint {A, : a < A} C [M\]¢ we have a < B < A
s.t. c(a.,i,asj) = h(i,j) forany (i,j) € £ x &.

FACT. (Shelah) For any &, if A = (27)" " + w, then Col(), k).

THEOREM (J-Shelah)

If A =cf(\) > x™ and Col(), ) holds then the Cantor cube C, has a
dense x-bounded subspace with a discretely untouchable point.

FACT. (van Douwen) There is a countable, crowded, regular space in
which every point is discretely untouchable.
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wD-bounded 1.

From now on, all spaces are T;.
wD = "countable discrete"
w-bounded = wD-bounded = countably compact

SEPARATION 1. (i) (J. van Mill, 1982) There is a point p € w* that is
w-touchable but not wD-touchable.
So, w* \ {p} is wD-bounded but not w-bounded.

(i) (R. Hernandez-Gutierrez, 2013) A first countable, locally compact
T, example exists under CH.

SEPARATION 2. (i) Any countably compact infinite space in which all
compact subspaces are finite.

(il) The Franklin-Rajagopalan space is locally compact T, and
sequentially compact but not wD-bounded.
Under CH, it is first countable.
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wD-bounded and countably tight

BIG OPEN PROBLEM: Is it consistent that countably compact, first
countable (or even countably tight), regular spaces are w-bounded?

THEOREM (J-Soukup-Szentmiklossy)
(i) wD-bounded and countably tight regular spaces are wN-bounded.
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(i) If b > wy then wD-bounded and countably tight regular spaces are
w-bounded.
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wD-bounded and countably tight

BIG OPEN PROBLEM: Is it consistent that countably compact, first
countable (or even countably tight), regular spaces are w-bounded?

THEOREM (J-Soukup-Szentmiklossy)

(i) wD-bounded and countably tight regular spaces are wN-bounded.

(i) If b > wy then wD-bounded and countably tight regular spaces are
w-bounded.

NOTE. (i) There is an wD-bounded but not wN-bounded Tychonov
space.

(i) If ¢ = wq then ( by Hernandez-Gutierrez) there is a first countable,
wD-bounded but not w-bounded, locally compact T, space.

PROBLEM

Does b = wy imply the existence of an wD-bounded and countably tight
(or first countable) regular space which is not w-bounded?
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(i) If b > wy then wD-bounded and countably tight regular spaces are
w-bounded.

NOTE. (i) There is an wD-bounded but not wN-bounded Tychonov
space.

(i) If ¢ = wq then ( by Hernandez-Gutierrez) there is a first countable,
wD-bounded but not w-bounded, locally compact T, space.

PROBLEM

Does b = wy imply the existence of an wD-bounded and countably tight
(or first countable) regular space which is not w-bounded?
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