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Introduction

FACT. (Folklore??)
If all free sequences in a topological space X have compact closure
then X is compact.

DEFINITION
For a property P of subspaces of X , we say that X is P-bounded iff the
closure in X of any subspace with P is compact.

So, F -bounded (and hence D-bounded) spaces are compact.

COROLLARY
Any non-isolated point of a compact T2 space is discretely touchable,
i.e. the accumulation point of a discrete set.
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DTTW

Dow-Tkachenko-Tkachuk-Wilson, TOPOLOGIES GENERATED BY
DISCRETE SUBSPACES, Glasnik Mat., 2002 :

DEFINITION
A space X is discretely generated iff x ∈ A implies x ∈ D for some
D ⊂ A discrete. X is weakly discretely generated iff A ⊂ X not closed
implies D " A for some D ⊂ A discrete.

So, compact T2 spaces are weakly discretely generated.
Also, countably tight compact T2 spaces are discretely generated.

EXAMPLE 1.
There is a compact T2 space which is not discretely generated
(if there is an L-space).

EXAMPLE 2.
Consistently, there is an ω-bounded (hence countably compact)
regular space with a discretely untouchable point.
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J-Shelah

THEOREM (J-Shelah)
For every cardinal κ, there is a κ-bounded 0-dimensional T2 space with
a discretely untouchable point.

DEFINITION. Col(λ, κ) : There is c : [λ]2 → 2 s.t., given ξ < κ+ and
h : ξ × ξ → 2, for any disjoint {Aα : α < λ} ⊂ [λ]ξ we have α < β < λ
s.t. c(aα,i ,aβ,j) = h(i , j) for any 〈i , j〉 ∈ ξ × ξ.

FACT. (Shelah) For any κ, if λ = (2κ)++ + ω4 then Col(λ, κ).

THEOREM (J-Shelah)
If λ = cf(λ) > κ+ and Col(λ, κ) holds then the Cantor cube Cλ has a
dense κ-bounded subspace with a discretely untouchable point.

FACT. (van Douwen) There is a countable, crowded, regular space in
which every point is discretely untouchable.
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A PROBLEM

TRIVIAL FACT. If λ = cf(λ) then the (ordered) space λ is
(< λ)-bounded but not λ-bounded.

PROBLEM
What if λ is singular?

THEOREM
If λ is singular and (

sup{22µ
: µ < λ}

)cf(λ)
< 22λ

then the Cantor cube C2λ has a dense subspace that is
(< λ)-bounded but not λ-bounded.

In particular, this is so if λ is strong limit.
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ωD-bounded 1.

From now on, all spaces are T1.

ωD ≡ "countable discrete"

ω-bounded⇒ ωD-bounded⇒ countably compact

SEPARATION 1. (i) (J. van Mill, 1982) There is a point p ∈ ω∗ that is
ω-touchable but not ωD-touchable.
So, ω∗ \ {p} is ωD-bounded but not ω-bounded.

(ii) (R. Hernandez-Gutierrez, 2013) A first countable, locally compact
T2 example exists under CH.

SEPARATION 2. (i) Any countably compact infinite space in which all
compact subspaces are finite.

(ii) The Franklin-Rajagopalan space is locally compact T2 and
sequentially compact but not ωD-bounded.
Under CH, it is first countable.
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ωD-bounded 2.

THEOREM (folklore ??)
If X is regular, countably compact, and L(X ) < p then X is ω-bounded.

THEOREM (J-Soukup-Szentmiklóssy)
If X is regular, ωD-bounded, and L(X ) < cov(M) then X is ω-bounded.

κ < p ⇔ MAκ(σ − centered) ,

κ < cov(M) ⇔ MAκ(countable) .

So, p ≤ cov(M) and p < cov(M) is consistent.
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ωD-bounded and countably tight

BIG OPEN PROBLEM: Is it consistent that countably compact, first
countable (or even countably tight), regular spaces are ω-bounded?

THEOREM (J-Soukup-Szentmiklóssy)
(i) ωD-bounded and countably tight regular spaces are ωN-bounded.

(ii) If b > ω1 then ωD-bounded and countably tight regular spaces are
ω-bounded.

NOTE. (i) There is an ωD-bounded but not ωN-bounded Tychonov
space.
(ii) If c = ω1 then ( by Hernandez-Gutierrez) there is a first countable,
ωD-bounded but not ω-bounded, locally compact T2 space.

PROBLEM
Does b = ω1 imply the existence of an ωD-bounded and countably tight
(or first countable) regular space which is not ω-bounded?
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On the proof

DEFINITION. Let X be any space, U ⊂ τ(X ) disjoint, S ⊂ ∪U dense.

I(S,U) = {D ∈ [S]≤ω : ∀U ∈ U
(
|D ∩ U| < ω

)
}

LEMMA
If X is regular then I(S,U) is a P-ideal.

THEOREM (J-Soukup-Szentmiklóssy)
Let X be regular, countably compact, and countably tight. Then for any
countable A ⊂ ∪U \ ∪U there is D ∈ I(S,U) s.t. A ⊂ D.

The proof of ωD-bounded ⇒ ωN-bounded easily follows.

COROLLARY
Regular, countably compact, and countably tight spaces are
discretely determined.
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PRODUCTS

ω-boundedness is fully productive, countable compactness is not
productive at all.

From now on, all spaces are T2.

THEOREM (J-S-Sz)
If Π{Xi : i ∈ I} is ωD-bounded but not ω-bounded, then there is
j ∈ I s.t. Xj is not ω-bounded and Π{Xi : i ∈ I \ {j}} is finite.

DEFINITION. X is weakly bounded iff for each A ∈ [X ]ω there is
B ∈ [A]ω s.t. B is compact.

ωD-bounded and sequentially compact spaces are both weakly
bounded. Weakly bounded spaces are countably compact.

THEOREM (J-S-Sz)
(i) The product of < t weakly bounded spaces is weakly bounded.
(ii) The product of t weakly bounded spaces is countably compact.
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