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String rewriting systems

Let Σ be a finite alphabet and Σ∗ the set of all words on Σ.

A string-rewriting system R on Σ is a subset of Σ∗ × Σ∗.

A single-step reduction relation on Σ∗ is defined by

u −→ v ⇐⇒ (∃(l , r) ∈ R) (∃ x , y ∈ Σ∗) u = xly and v = xry .

The reduction relation on Σ∗ induced by R is the reflexive, transitive
closure of −→ and is denoted by

∗−→ .

The structure S = (Σ∗,R) is called a reduction system.
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String rewriting systems

A word in Σ∗ is in normal form if we cannot apply a relation in R.

S is noetherian if 6 ∃ w = w0 −→ w1 −→ w2 −→ · · ·

S is confluent S is locally confluent

w

x y

z

w

x y

z

∗ ∗

∗ ∗ ∗ ∗

Facts:
1 let ρ be the congruence generated by R. Then S is noetherian and

confluent implies every ρ-class contains a unique normal form.
2 If S is noetherian, then

confluent ⇐⇒ locally confluent.
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Free idempotent generated semigroups

Let S be a semigroup with E a set of all idempotents of S .

For any e, f ∈ E , define

e ≤R f ⇔ fe = e and e ≤L f ⇔ ef = e.

Note e ≤R f (e ≤L f ) implies both ef and fe are idempotents.

We say that (e, f ) is a basic pair if

e ≤R f , f ≤R e, e ≤L f or f ≤L e

i.e. {e, f } ∩ {ef , fe} 6= ∅; then ef , fe are said to be basic products.

Under basic products, E satisfies a number of axioms.

A biordered set is a partial algebra satisfying these axioms.
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Free idempotent generated semigroups

Let S be a semigroup with biordered set E .

The free idempotent generated semigroup IG(E ) is defined by

IG(E ) = 〈E : ē f̄ = ef , e, f ∈ E , {e, f } ∩ {ef , fe} 6= ∅〉.

where E = {ē : e ∈ E}.

Facts:

1 φ : IG(E )→ 〈E 〉, given by ēφ = e is an epimorphism.

2 E ∼= E (IG(E ))

Note IG(E ) naturally gives us a reduction system (E
∗
,R), where

R = {(ē f̄ , ef ) : (e, f ) is a basic pair}.

Aim Today: To study the general structure of IG(E ), for some bands.
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IG(E ) = 〈E : ē f̄ = ef , e, f ∈ E , {e, f } ∩ {ef , fe} 6= ∅〉.

where E = {ē : e ∈ E}.
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where E = {ē : e ∈ E}.

Facts:

1 φ : IG(E )→ 〈E 〉, given by ēφ = e is an epimorphism.
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IG(E ) over semilattices

IG(E ) is not necessarily regular.

Consider a semilattice

e f

g

Then e f ∈ IG(E ) is not regular.

What other structures does IG(E ) might have?
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IG(E ) over semilattices

Green’s star equivalences

For any a, b ∈ S ,

a L∗ b ⇐⇒ (∀x , y ∈ S1) (ax = ay ⇔ bx = by).

Dually, the relation R∗ is defined on S .

Note L ⊆ L∗, R ⊆ R∗.

Definition A semigroup S is called abundant if each L∗-class and each
R∗-class contains an idempotent of S .
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IG(E ) over semilattices

Lemma (E
∗
,R) is locally confluent.

(i) e ≤ f , f ≤ g (ii) e ≤ f , f ≥ g

e f g

e g e f

e

e f g

e g e g

e g

(iii) e ≥ f , f ≥ g (iv) e ≥ f , f ≤ g

e f g

f g e g

g

e f g

f g e f

f
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IG(E ) over semilattices

Lemma (E
∗
,R) is noetherian.

Corollary Every element x1 · · · xn ∈ IG(E ) has a unique normal form.

Theorem IG(E ) is abundant, and so adequate.

Note Adequate semigroups belong to a quasivariety of algebras introduced
in York by Fountain over 30 years ago, for which the free objects have
recently been described.
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IG(E ) over simple bands

Recall that a band E is a semilattice Y of rectangular bands Eα, where
α ∈ Y .

Definition A band E is called a simple band if each Eα is either a left
zero band or a right zero band, for all α ∈ Y .
Note We lose the uniqueness of normal form here! Consider the following
simple band

a

b c d

e

a b c d e

a a b c d e
b b b c e e
c b b c e e
d d e e d e
e e e e e e

Clearly, c d = c ad = c a d = ca d = b d
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IG(E ) over simple bands

Note IG(E ) does not have to be abundant.

Let E = {a, b, x , y} be a simple band with

a b

x y

a b x y

a a y x y
b y b x y
x x y x y
y y y x y

Note a b does not R∗-related to any element in E .
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IG(E ) over simple bands

Let U ⊆ E (S). For any a, b ∈ S ,

a L̃U b ⇐⇒ (∀e ∈ U) (ae = a⇔ be = b).

a R̃U b ⇐⇒ (∀e ∈ U) (ea = a⇔ eb = b).

Note L ⊆ L∗ ⊆ L̃U , R ⊆ R∗ ⊆ R̃U .

Definition A semigroup S with U ⊆ E (S) is called weakly U-abundant if
each L̃U -class and each R̃U -class contains an idempotent in U, and U is
called the distinguished set of S .

Definition A weakly U-abundant semigroup semigroup S satisfies the
congruence condition if L̃U is a right congruence and R̃U is a left
congruence.
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IG(E ) over simple bands

Lemma For any e ∈ Eα, f ∈ Eβ, (e, f ) is basic pair in E if and only if
(α, β) is a basic pair in Y .

Lemma Let θ : S −→ T be an onto homomorphism of semigroups S and
T . Then a map

θ : IG(U) −→ IG(V )

defined by e θ = eθ for all e ∈ U, is a well defined homomorphism, where
U and V are the biordered sets of S and T , respectively.
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IG(E ) over simple bands

Let α = w1 · · · wk with wi ∈ Eγi , for 1 ≤ i ≤ k . Then

(w1 · · · wk) θ = γ1 · · · γk .

We choose i1, j1, i2, j2, · · · , ir ∈ {1, · · · , k} in the following way:

γ1 · · · γi1−1

γi1

γi1+1 · · ·γj1 γj1+1 · · · γi2−1

γi2 · · · γir

· · · γir+1 · · · γik

×

×

We call i1, · · · , ir are the significant indices of α.

Lemma r and γi1 , · · · , γir are fixed for the equivalence class of α.
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IG(E ) over simple bands

Lemma Suppose α = w1 · · · wk and β = x1 · · · xl with α ∼ β via single
reduction. Suppose that the significant indices of α and β are i1, · · · , ir
and z1, · · · , zr , respectively. Then w1 · · ·wi1 R x1 · · · xz1 .

Lemma Let E be a simple band and x1 · · · xn ∈ IG(E ) with normal forms

u1 · · · um = v1 · · · vs .

Then s = m and ui D vi , for all i ∈ [1,m]. In particular, we have

u1 R v1 and um L vm.

Theorem IG(E ) over a simple band is a weakly abundant semigroup with
the congruence condition.
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IG(E ) over strong simple bands

Definition A band E is a strong simple band if it is a strong semilattice
of right/zero bands.

Lemma Let α = w1 · · · wk and β = x1 · · · xl such that α ∼ β via single
reduction. Suppose that the significant indices of α and β are i1, · · · , ir
and z1, · · · , zr , respectively. Then

x1 · · · xzl = w1 · · · wilu

where l ∈ [1, r ] and u ∈ E .

Lemma Let u1 · · · um = v1 · · · vm ∈ IG(E ) be in normal form. Then
(i) ui L vi implies u1 · · · ui = v1 · · · vi ;
(ii) ui R vi implies ui · · · um = vi · · · vm.

Theorem IG(E ) over a strong simple band is abundant.
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A key message

Thank you!
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