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Multi-index notation

Let [n] = {1,2, . . . ,n} and denote arbitrary, canonically
ordered subsets of [n] by capital Roman characters.
2[n] denotes the power set of [n].
Elements indexed by subsets:

γJ =
∏
j∈J

γj .

Natural binary representation
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Special elements

γ∅ (identity)
γα (commutes with generators, γα2 = γ∅)
0γ (“absorbing element” or “zero” )
“Special” elements do not contribute to Hamming weight.
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Groups

Nonabelian – Bp,q “Blade group” (Clifford Lipschitz groups)
γiγj = γαγjγi (1 ≤ i 6= j ≤ p + q)

γi
2 =

{
γ∅ 1 ≤ i ≤ p,
γα p + 1 ≤ i ≤ p + q

Abelian – Bp,q
sum “Abelian blade group”

γiγj = γjγi (1 ≤ i 6= j ≤ p + q)

γi
2 =

{
γ∅ 1 ≤ i ≤ p,
γα p + 1 ≤ i ≤ p + q
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Semigroups

Nonabelian – “Null blade semigroup” Zn
γiγj = γαγjγi (1 ≤ i 6= j ≤ n)

γi
2 =

{
0 1 ≤ i ≤ n,
γ∅ i = α

Abelian – “Zeon semigroup” Zn
sym

γiγj = γjγi (1 ≤ i 6= j ≤ n)

γi
2 =

{
0 1 ≤ i ≤ n,
γ∅ i = ∅
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Passing to semigroup algebra:

Canonical expansion of arbitrary u ∈ A:

u =
∑

J∈2[n]∪{α}

uJ γJ

=
∑

J∈2[n]

uJ
+ γJ + γα

∑
J∈2[n]

uJ
− γJ .

Naturally graded by Hamming weight (cardinality of J).
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Group or Quotient Isomorphic
Semigroup Algebra Algebra
Bp,q RBp,q/〈γα + γ∅〉 C`p,q
Bp,q

sym RBp,q
sym/〈γα + γ∅〉 C`p,qsym

Zn RZn/ 〈0γ , γα + γ∅〉
∧

Rn

Zn
sym RZn

sym/ 〈0γ〉 C`nnil
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Induced Operators
* Operators on Clifford algebras
* Operators on zeons

Reduced / Deduced Operators

Idea: Induced Operators

1 Let V be the vector space spanned by generators {γj} of
(semi)group S.

2 Let A be a linear operator on V .
3 A naturally induces an operator A on the semigroup

algebra RS according to action (multiplication, conjugation,
etc.) on S.

A(γJ) :=
∏
j∈J

A(γj )
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Reduced / Deduced Operators

The Clifford algebra C`p,q

1 Real, associative algebra of dimension 2n.
2 Generators {ei : 1 ≤ i ≤ n} along with the unit scalar

e∅ = 1 ∈ R.
3 Generators satisfy:

[ei ,ej ] := ei ej + ej ei = 0 for 1 ≤ i 6= j ≤ n,

ei
2 =

{
1 if 1 ≤ i ≤ p,
−1 ifp + 1 ≤ i ≤ p + q.
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Reduced / Deduced Operators

Rotations & Reflections: x 7→ uvxvu
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Reduced / Deduced Operators

Hyperplane Reflections

1 Product of orthogonal vectors is a blade.
2 Given unit blade u ∈ C`Q(V ), where Q is positive definite.
3 The map x 7→ uxu−1 represents a composition of

hyperplane reflections across pairwise-orthogonal
hyperplanes.

4 This is group action by conjugation.
5 Each vertex of the hypercube underlying the Cayley graph

corresponds to a hyperplane arrangement.
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Reduced / Deduced Operators

Blade conjugation

1 u ∈ B`p,q ' C`Q(V ) a blade.
2 Φu(x) := uxu−1 is a Q-orthogonal transformation on V .
3 Φu induces ϕu on C`Q(V ).
4 The operators are self-adjoint w.r.t. 〈·, ·〉Q; i.e., they are

quantum random variables.
5 Characteristic polynomial of Φu generates Kravchuk

polynomials.
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Reduced / Deduced Operators

Blade conjugation

1 Conjugation operators allow factoring of blades.
Eigenvalues ±1
Basis for each eigenspace provides factorization of
corresponding blade.

2 Quantum random variables obtained at every level of
induced operators.

ϕ(`) is self-adjoint w.r.t. Q-inner product for each
` = 1, . . . ,n.

3 Kravchuk polynomials appear in traces at every level.
4 Kravchuk matrices represent blade conjugation operators

(in most cases1).

1G.S. Staples, Kravchuk Polynomials & Induced/Reduced Operators on
Clifford Algebras, Preprint (2013).



Introduction
Operator Induction & Reduction

Operator Calculus
Applications

Induced Operators
* Operators on Clifford algebras
* Operators on zeons

Reduced / Deduced Operators

More generally...

1 Suppose X is a linear operator on V .
2 Suppose I, J ∈ 2|V | with |I| = |J| = `.
3 Then, 〈vI |X(`)|vJ〉 = det(XIJ).

Here, XIJ is the submatrix of X formed from the rows
indexed by I and the columns indexed by J.
This holds for C`Q(V ) as well as

∧
V . In the latter case, X is

block diagonal.
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Reduced / Deduced Operators

The zeon algebra C`n
nil

1 Real, associative algebra of dimension 2n.
2 Generators {ζi : 1 ≤ i ≤ n} along with the unit scalar
ζ∅ = 1 ∈ R.

3 Generators satisfy:
[ζi , ζj ] := ζi ζj − ζj ζi = 0 for 1 ≤ i , j ≤ n,
ζiζj = 0⇔ i = j .
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Reduced / Deduced Operators

Zeons

1 Applications in combinatorics, graph theory, quantum
probability explored in monograph by Schott & Staples 2.
Based on papers by Staples and joint work with Schott.

2 Induced maps appear in work by Feinsilver & McSorley 3

2Operator Calculus on Graphs (Theory and Applications in Computer
Science), Imperial College Press, London, 2012

3P. Feinsilver, J. McSorley, Zeons, permanents, the Johnson scheme, and
generalized derangements, International Journal of Combinatorics, vol. 2011,
Article ID 539030, 29 pages, 2011. doi:10.1155/2011/539030

doi:10.1155/2011/539030
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Reduced / Deduced Operators

Adjacency matrices

1 Let G = (V ,E) be a graph on n vertices.
2 Let A denote the adjacency matrix of G, viewed as a linear

transformation on the vector space generated by
V = {v1, . . . , vn}.

3 A(k) denotes the multiplication-induced operator on the
grade-k subspace of the semigroup algebra C`V nil.
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Reduced / Deduced Operators

Theorem
For fixed subset I ⊆ V, let XI denote the number of disjoint
cycle covers of the subgraph induced by I. Similarly, let MJ
denote the number of perfect matchings on the subgraph
induced by J ⊆ V (nonzero only for J of even cardinality). Then,

tr(A(k)) =
∑
I⊂V
|I|=k

∑
J⊆I

XI\JMJ .
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Sketch of Proof

1 〈vJ |A(k)|vJ〉 = per(AJ + I), where AJ is the adjacency
matrix of the subgraph induced by vJ .

2 per(AJ + I) :=
∑
σ∈S|J|

|J|∏
j=1

aj σ(j)

3 Each permutation has a unique factorization into disjoint
cycles. Each product of 2-cycles corresponds to a perfect
matching on a subgraph. Cycles of higher order in S|J|
correspond to cycles in the graph.
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Generating Function

Let A be the adjacency matrix of a graph. Letting
f (t) := per(A + tI), one finds that the coefficient of tn−k satisfies

〈f (t), t(n−k)〉 = tr(A(k)).

Hence,
f (n−k)(0) = (n − k)!tr(A(k)).
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Reduced / Deduced Operators

Nilpotent Adjacency Operator

Let G = (V ,E) be a graph on n vertices, and let A be the
adjacency matrix of G.

1 {ζi : 1 ≤ i ≤ n} generators of C`nnil.
2 The nilpotent adjacency operator associated with G is an

operator A on (C`nnil)n induced by A via

〈vi |A|vj〉 =

{
ζj if (vi , vj) ∈ E(G),

0 otherwise.
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Form of Ak

Theorem
Let A be the nilpotent adjacency operator of an n-vertex graph
G. For any k > 1 and 1 ≤ i , j ≤ n,〈

vi |Ak |vj

〉
=
∑
I⊆V
|I|=k

ωIζI , (1)

where ωI denotes the number of k-step walks from vi to vj
revisiting initial vertex vi exactly once when i ∈ I and visiting
each vertex in I exactly once when i /∈ I.
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Reduced / Deduced Operators

Idea

1 A is represented by a nilpotent adjacency matrix.
2 Powers of the nilpotent adjacency matrix “sieve-out” the

self-avoiding structures in the graph.
3 “Automatic pruning” of tree structures.



Introduction
Operator Induction & Reduction

Operator Calculus
Applications

Induced Operators
* Operators on Clifford algebras
* Operators on zeons

Reduced / Deduced Operators

Example
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Reduced / Deduced Operators

Cycles from Ak

Corollary
For any k ≥ 3 and 1 ≤ i ≤ n,〈

vi |Ak |vi

〉
=
∑
I⊆V
|I|=k

ξIζI , (2)

where ξI denotes the number of k-cycles on vertex set I based
at i ∈ I.
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Reduced / Deduced Operators

Flexibility

1 Convenient for symbolic computation
2 Easy to consider other self-avoiding structures (trails,

circuits, partitions, etc.)
3 Extends to random graphs, Markov chains, etc.
4 Sequences of operators model graph processes
5 The operators themselves generate finite semigroups.
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Reduced / Deduced Operators

Idea: Reduced Operators

1 Consider operator A on the semigroup algebra RS.
2 Let V be the vector space spanned by generators {γj} of

(semi)group S.

3 If A is induced by an operator A on V , then A = A

∣∣∣∣
V

is the

operator on V deduced from A.
4 Let V∗ = R⊕V be the paravector space associated with V .
5 A naturally reduces by grade to an operator A′ on V∗.
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Grade-reduced operators

1 Paravector space V∗ = R⊕ V spanned by ordered basis
{ε0, . . . , εn}

2 Operator A on V∗ = R⊕ V is grade-reduced from A if its
action on the basis of V∗ satisfies

〈εi |A|εj〉 =
∑
]a=i
]b=j

〈a|A|b〉,

where the sum is taken over blades in some fixed basis of
RS. Write A↘ A.



Introduction
Operator Induction & Reduction

Operator Calculus
Applications

Induced Operators
* Operators on Clifford algebras
* Operators on zeons

Reduced / Deduced Operators

Properties & Interpretation

1 In C`Q(V ), Kravchuk matrices and symmetric Kravchuk
matrices arise.

2 Over zeons, graph-theoretic interpretations arise. Suppose
A is the adjacency matrix of graph G and that A↗ A↘ A′.
Then,

〈εk |A′|εk 〉 = tr(A(k)) =
∑
I⊂V
|I|=k

∑
J⊆I

XI\JMJ .

tr(A′) =
n∑

k=0

∑
I⊂V
|I|=k

∑
J⊆I

XI\JMJ
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Operator Calculus (OC)

1 Lowering operator Λ

differentiation
annihilation
deletion

2 Raising operator Ξ

integration
creation
addition/insertion
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OC & Clifford multiplication

1 Left lowering Λx: u 7→ xyu
2 Right lowering Λ̂x: u 7→ uxx
3 Left raising Ξx: u 7→ x ∧ u
4 Right raising Ξ̂x: u 7→ u ∧ x
5 Clifford product satisfies

xu = Λxu + Ξ̂xu
ux = Λ̂xu + Ξxu
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OC & blade conjugation

1 Given a blade u ∈ C`Q(V );
2 Extend lowering, raising by associativity to blades, i.e., Λu,

Ξu, etc.
3 Operator calculus (OC) representation of conjugation

operator ϕu, x 7→ uxu−1, is

ϕu ' ΛuΞu−1 + Ξ̂uΛ̂u−1 .
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Motivation

Graphs→ Algebras

Processes on Algebras→ Processes on Graphs
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Random walks & stochastic processes

1 Walks on hypercubes↔ addition-deletion processes on
graphs

2 Walks on “signed hypercubes”↔ multiplicative processes
on Clifford algebras
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Random walks & stochastic processes

1 Partition-dependent stochastic integrals. (Staples, Schott &
Staples)

2 Random walks on hypercubes can be modeled by raising
and lowering operators. (Staples)

3 Random walks in Clifford algebras (Schott & Staples)
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Graph processes as algebraic processes

The idea is to encode the entire process using (nilpotent)
adjacency operators and use projections to recover information
about graphs at different steps of the process:

Expected numbers of cycles
Probability of connectedness
Expected numbers of spanning trees
Determine size of maximally connected components
Expected time at which graph becomes
connected/disconnected
Limit theorems
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Addition-deletion processes via hypercubes

1 Graph G[n] on vertex set V = [n] with predetermined
topology.

2 Markov chain (Xk ) on power set of V .

Family of functions f` : 2[n] → [0,1] such that for each
I ∈ 2[n],

n∑
`=1

f`(I) = 1.

P(Xk = I|Xk−1 = J) =

{
f`(J) I4J = {`},
0 otherwise.
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Walks on Qn

1 Walk on Qn corresponds to graph process
(G(Un) : n ∈ N0).

2 Each vertex of Qn is uniquely identified with a graph.
3 Adding a vertex corresponds to combinatorial raising.
4 Deleting a vertex corresponds to combinatorial lowering.
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Addition-deletion processes via hypercubes

1 Corresponds to Markov chain (ξt ) on a commutative
algebra by U 7→ ςU , with multiplication ςUςV = ςU4V .

2 Markov chain induced on the state space of all
vertex-induced subgraphs. I.e.,

S = {GU : U ⊆ V}

3 Let ΨU denote the nilpotent adjacency operator of the
graph GU .
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Addition-deletion processes via hypercubes

1 Well-defined mapping ςU 7→ ςU ΨU

2 Expected value at time `:

〈ξ`〉 =
∑

U∈2[n]

P(ξ` = ςU)ςU .

3 Define notation:

Ψ〈ξ`〉
∑

U∈2[n]

P(ξ` = ςU)ςUΨU .
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Paths Lemma

Given vertices vi , vj ∈ V , the expected number of k -paths vi to
vj at time ` in the addition-deletion process (Gt ) is given by

E(|{k -paths vi → vj at time `}|) = ζ{i}
∑

U∈2[n]

〈vi |〈Ψ〈ξ`〉, ςU〉
k |vj〉.
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Networks

Wireless sensor networks (Ben Slimane, Nefzi, Schott, &
Song)
Satellite communications (w. Cruz-Sánchez, Schott, &
Song)
Mobile ad-hoc networks
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Shortest Paths: Motivation

Goal: To send a data packet from node vinitial to node vterm
quickly and reliably.
In order to route the packet efficiently, you need to know
something about the paths from vinitial to vterm in the graph.
When the graph is changing, a sequence of nilpotent
adjacency operators can be used. 4

4H. Cruz-Sánchez, G.S. Staples, R. Schott, Y-Q. Song, Operator calculus
approach to minimal paths: Precomputed routing in a store-and-forward
satellite constellation, Proceedings of IEEE Globecom 2012, Anaheim, USA,
December 3-7, 3438–3443.
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To be continued...

THANKS FOR YOUR ATTENTION!
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More on Clifford algebras, operator calculus, and
stochastic processes

http://www.siue.edu/~sstaple

http://www.siue.edu/~sstaple
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More on Clifford algebras, graph theory, and
stochastic processes

R. Schott, G.S. Staples. Operator calculus and invertible
Clifford Appell systems: theory and application to the
n-particle fermion algebra, Infinite Dimensional Analysis,
Quantum Probability and Related Topics, 16 (2013),
dx.doi.org/10.1142/S0219025713500070.
H. Cruz-Sánchez, G.S. Staples, R. Schott, Y-Q. Song,
Operator calculus approach to minimal paths:
Precomputed routing in a store-and-forward satellite
constellation, Proceedings of IEEE Globecom 2012,
Anaheim, USA, December 3-7, 3438–3443.

dx.doi.org/10.1142/S0219025713500070
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More on Clifford algebras, graph theory, and
stochastic processes

G. Harris, G.S. Staples. Spinorial formulations of graph
problems, Advances in Applied Clifford Algebras, 22
(2012), 59–77.
R. Schott, G.S. Staples, Complexity of counting cycles
using zeons, Computers and Mathematics with
Applications, 62 (2011), 1828–1837 .
R. Schott, G.S. Staples. Connected components and
evolution of random graphs: an algebraic approach, J. Alg.
Comb., 35 (2012), 141–156.
R. Schott, G.S. Staples. Nilpotent adjacency matrices and
random graphs, Ars Combinatoria, 98 (2011), 225–239.
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More on Clifford algebras, graph theory, and
stochastic processes

R. Schott, G.S. Staples. Zeons, lattices of partitions, and
free probability, Comm. Stoch. Anal., 4 (2010), 311-334.
R. Schott, G.S. Staples. Operator homology and
cohomology in Clifford algebras, Cubo, A Mathematical
Journal, 12 (2010), 299-326.
R. Schott, G.S. Staples. Dynamic geometric graph
processes: adjacency operator approach, Advances in
Applied Clifford Algebras, 20 (2010), 893-921.
R. Schott, G.S. Staples. Dynamic random walks in Clifford
algebras, Advances in Pure and Applied Mathematics, 1
(2010), 81-115.
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More on Clifford algebras, graph theory, and
stochastic processes

R. Schott, G.S. Staples. Reductions in computational
complexity using Clifford algebras, Advances in Applied
Clifford Algebras, 20 (2010), 121-140.
G.S. Staples. A new adjacency matrix for finite graphs,
Advances in Applied Clifford Algebras, 18 (2008), 979-991.
R. Schott, G.S. Staples. Nilpotent adjacency matrices,
random graphs, and quantum random variables, Journal of
Physics A: Mathematical and Theoretical, 41 (2008),
155205.
R. Schott, G.S. Staples. Random walks in Clifford algebras
of arbitrary signature as walks on directed hypercubes,
Markov Processes and Related Fields, 14 (2008), 515-542.
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More on Clifford algebras, graph theory, and
stochastic processes

G.S. Staples. Norms and generating functions in Clifford
algebras, Advances in Applied Clifford Algebras, 18
(2008), 75-92.
R. Schott, G.S. Staples. Partitions and Clifford algebras,
European Journal of Combinatorics, 29 (2008), 1133-1138.
G.S. Staples. Graph-theoretic approach to stochastic
integrals with Clifford algebras, Journal of Theoretical
Probability, 20 (2007), 257-274.
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More on Clifford algebras, graph theory, and
stochastic processes

R. Schott, G.S. Staples. Operator calculus and Appell
systems on Clifford algebras, International Journal of Pure
and Applied Mathematics, 31 (2006), 427-446.
G.S. Staples. Clifford-algebraic random walks on the
hypercube, Advances in Applied Clifford Algebras, 15
(2005), 213-232.
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