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Random graphs

Definition

A κ-random graph is a graph (V,E) such that |V | = κ that satisfies the
following extension property:

∀U,W ∈ [V ]<κ(U∩W = ∅ ⇒ ∃v ∈ V (∀u ∈ U vu ∈ E∧∀w ∈W vw /∈ E)).

Rado graph - the unique ℵ0-random graph.

Related structures: random digraphs, random tournaments, etc.
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Random bigraphs

Definition

(κ, λ)-bigraph is a structure G = (X,Y,E), where (X ∪ Y,E) is a
digraph such that |X| = κ, |Y | = λ and E ⊆ {xy : x ∈ X, y ∈ Y }.

We call X the left side, and Y the right side.
ΓGU,W = {x ∈ X : ∀u ∈ U xu ∈ E ∧ ∀w ∈W xw /∈ E}
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Random bigraphs

ΓGU,W = {x ∈ X : ∀u ∈ U xu ∈ E ∧ ∀w ∈W xw /∈ E}

Definition

Let µ ≤ λ. A (κ, λ)-bigraph (X,Y,E) is (κ, λ, µ)-random if

∀U,W ∈ [Y ]<µ (U ∩W = ∅ ⇒ ΓGU,W 6= ∅).

Definition

If µ ≤ κ, a (κ, λ)-bigraph (X,Y,E) is (κ, λ, µ)-dense if

∀U,W ∈ [X]<µ (U ∩W = ∅ ⇒ ∃y ∈ Y (∀u ∈ U uy ∈ E ∧ ∀w ∈W wy /∈ E)).

If G satisfies both conditions we will call it (κ, λ, µ)-random dense.
A (κ, λ,ℵ0)-random bigraph is called just (κ, λ)-random.
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Random bigraphs

ΓGU,W = {x ∈ X : ∀u ∈ U xu ∈ E ∧ ∀w ∈W xw /∈ E}
(κ, λ, µ)-random bigraph: ∀U,W ∈ [Y ]<µ (U ∩W = ∅ ⇒ ΓGU,W 6= ∅).
(κ, λ, µ)-dense bigraph:
∀U,W ∈ [X]<µ (U ∩W = ∅ ⇒ ∃y ∈ Y (∀u ∈ U uy ∈ E ∧ ∀w ∈W wy /∈ E)).

Lemma

(a) In a (κ, λ, µ)-random bigraph (X,Y,E) we can find for every disjoint

U,W ∈ [Y ]<µ µ-many vertices x ∈ X that satisfy xu ∈ E for all u ∈ U and

xw /∈ E for all w ∈W .

(b) In a (κ, λ, µ)-dense bigraph (X,Y,E) we can find for every disjoint

U,W ∈ [X]<µ µ-many vertices y ∈ Y that satisfy uy ∈ E for all u ∈ U and

wy /∈ E for all w ∈W .
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Independent and dense families

κ-random graph: ∀U,W ∈ [V ]<κ(U ∩W = ∅ ⇒ ∃v ∈ V (∀u ∈ U vu ∈ E ∧∀w ∈W vw /∈ E)).

Definition

Let µ ≤ λ. A family A = {Aα : α < λ} of subsets of κ is called
(κ, λ, µ)-independent if

∀U,W ∈ [λ]<µ(U ∩W = ∅ ⇒
⋂
α∈U

Aα ∩
⋂
α∈W

(κ \Aα) 6= ∅).
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The connection

Let A = {Aα : α < λ} be a (κ, λ, µ)-independent family. Let X and Y
be disjoint sets of cardinalities κ and λ respectively. We enumerate
them: X = {xβ : β < κ}, Y = {yα : α < λ}, and define the relation
E ⊆ X × Y : let xβyα ∈ E iff β ∈ Aα. Then (X,Y,E) is a
(κ, λ, µ)-random bigraph.

On the other hand, let G = (X,Y,E) be a (κ, λ, µ)-random bigraph.
We enumerate X = {xβ : β < κ} and Y = {yα : α < λ} and define, for
each α ∈ λ, Aα = {β ∈ κ : xβyα ∈ E}. Then {Aα : α < λ} is a
(κ, λ, µ)-independent family.
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Robustness

Lemma

Every bigraph obtained from a (κ, λ, µ)-random bigraph (X,Y,E) by

(a) adding ≤ κ vertices to X (connected to arbitrary vertices from Y )

(b) removing < µ vertices from X

(c) removing < λ vertices from Y

(d) replacing < µ edges with non-edges and < µ non-edges with edges

is also a (κ, λ, µ)-random bigraph.

Lemma

Let µ be a regular cardinal. Every bigraph obtained from a
(κ, λ, µ)-random dense bigraph by deleting < µ edges from each vertex
is also a (κ, λ, µ)-random dense bigraph.
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Existence, uniqueness, homogeneity

Fact

If κ<µ = κ then there is a (κ, 2κ, µ)-random bigraph.

Boris Šobot (Novi Sad) Random bipartite graphs June 5th, 2013 9 / 20



Existence, uniqueness, homogeneity

Theorem (Goldstern, Grossberg, Kojman, 1996)

(a) There is exactly one (up to isomorphism) (ℵ0,ℵ0)-random dense
bigraph, and it is homogeneous.
(b) Every homogeneous (κ, λ)-bigraph which is neither empty nor
complete is either a perfect matching or its complement or a
(κ, λ)-random dense bigraph (of course, when κ 6= λ, only the latter
option remains).
(c) There is a (κ, 2κ)-random dense bigraph for every infinite cardinal
κ.
(d) (¬CH∧MA) For every κ < c there is unique (ℵ0, κ)-random dense
bigraph up to isomorphism.
(e) (2κ

+
> 2κ) There are 2κ

+
-many nonisomorphic (κ, κ+)-random

dense bigraphs.
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Universality

Theorem

Every (κ1, λ1)-bigraph for κ1 ≤ µ and λ1 < µ can be embedded in any
(κ, λ, µ)-random bigraph.

Theorem

Every (κ1, λ1)-bigraph for κ1 ≤ µ and λ1 ≤ µ can be embedded in any
(κ, λ, µ)-random dense bigraph.

Boris Šobot (Novi Sad) Random bipartite graphs June 5th, 2013 11 / 20



Universality

Theorem

Every (κ1, λ1)-bigraph for κ1 ≤ µ and λ1 < µ can be embedded in any
(κ, λ, µ)-random bigraph.

Theorem

Every (κ1, λ1)-bigraph for κ1 ≤ µ and λ1 ≤ µ can be embedded in any
(κ, λ, µ)-random dense bigraph.
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Factorization

Theorem

(a) Every (κ, κ, κ)-random dense bigraph has a perfect matching.
(b) Every (κ, κ, κ)-random dense bigraph has a 1-factorization, i.e. its
set of edges can be partitioned into disjoint perfect matchings.
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A partition property for graphs

P: for every partition of the set of vertices of G into finitely many
pieces at least one of the induced graphs is isomorphic to G.

Theorem (Cameron)

The only countable graphs with the property P up to isomorphism are
the empty graph, the complete graph and the Rado graph.
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A partition property for tournaments

P: for every partition of the set of vertices of T into finitely many
pieces at least one of the induced tournaments is isomorphic to T .

Theorem (Bonato, Cameron, Delić, 2000)

The only countable tournaments with the property P up to
isomorphism are the random tournament, and tournaments ωα and
(ωα)∗ for 0 < α < ω1.
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A partition property for digraphs

P: for every partition of the set of vertices of G into finitely many
pieces at least one of the induced digraphs is isomorphic to G.

Theorem (Diestel, Leader, Scott, Thomassé, 2007)

The only countable digraphs with the property P up to isomorphism
are the empty digraph, the random tournament, tournaments ωα and
(ωα)∗ for 0 < α < ω1, the random digraph, the random acyclic digraph
and its inverse.
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A partition property for bigraphs

P: for every partition of the set of vertices of G into finitely many
pieces at least one of the induced sub-bigraphs is isomorphic to G.
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A partition property for bigraphs

P ′: for every partition of the set of vertices of G into finitely many
pieces that each induce (ℵ0,ℵ0)-bigraphs at least one
of the induced sub-bigraphs is isomorphic to G.

Lemma

Let µ be a regular cardinal and ν < µ. Let {Vγ : γ < ν} be a partition
of the set of vertices of (κ, λ, µ)-random bigraph such that each Vγ has
at least µ vertices on each side. Then at least one of the induced
sub-bigraphs is (κ1, λ1, µ)-random for some κ1 ≤ κ and λ1 ≤ λ.

Lemma

The (ℵ0,ℵ0)-random dense bigraph does not satisfy P ′.
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A partition property for bigraphs

P ′: for every partition of the set of vertices of G into finitely many
pieces that each induce (ℵ0,ℵ0)-bigraphs at least one
of the induced sub-bigraphs is isomorphic to G.

Example

S = (X,Y,E) is defined by X = {xn : n ∈ ω}, Y = {yn : n ∈ ω} and
E = {xny0 : n ∈ ω}. S, S∗ and their complements have P ′.

Theorem

The only (ℵ0,ℵ0)-bigraphs with the property P ′ up to isomorphism are
the empty (ℵ0,ℵ0)-bigraph, the complete (ℵ0,ℵ0)-bigraph, the bigraphs
S and S∗ and their complements.
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pieces that each induce (ℵ0,ℵ0)-bigraphs at least one
of the induced sub-bigraphs is isomorphic to G.

Example

S = (X,Y,E) is defined by X = {xn : n ∈ ω}, Y = {yn : n ∈ ω} and
E = {xny0 : n ∈ ω}. S, S∗ and their complements have P ′.

Theorem
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More partition properties

Theorem

Let X = X0 ∪X1 and Y = Y0 ∪ Y1 be partitions of sides of the
(ℵ0,ℵ0)-random dense bigraph G into infinite subsets.
(a) There is i ∈ {0, 1} such that the sub-bigraph induced by Xi ∪ Yi is
(ℵ0,ℵ0)-random.
(b) There is j ∈ {0, 1} such that the sub-bigraph induced by Xj ∪ Yj is
(ℵ0,ℵ0)-dense.
(c) There are i, j ∈ {0, 1} such that the sub-bigraph induced by Xi ∪ Yj
is (ℵ0,ℵ0)-random dense and hence isomorphic to G.
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