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Definitions

Definition

An automaton is a triple A = (Q,B, δ) where:
Q is a finite set of states
B is a finite alphabet
δ : Q × B → Q × B is the transition function.
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Definitions cont.

Automata have outputs:

?>=<89:;q
x |y //?>=<89:;r

If we are in state q and read symbol x , we move to state r and
output y . That is, δ(q, x) = (r , y).

If we’re in state q0 and read a sequence α1α2 . . . αn we output
β1β2 . . . βn where δ(qi−1, αi ) = (qi , βi ).

Starting in state q and reading α gives an endomorphism of the
|B|-ary rooted tree. Extending this to several states gives a
homomorphism φ : Q+ → End(B∗).

We say that Σ(A) ∼= im(φ) is the automaton semigroup.
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Cayley Automaton Semigroups

C(S) is the automaton arising from the Cayley Table of S . Each
element s ∈ S gives a state s. Transitions are defined by
right-multiplication in S : reading symbol t in state s moves us to
state st and outputs symbol st.

A typical edge looks like

?>=<89:;s
t|st // ?>=<89:;st

More formally:

C(S) = (S ,S , δ), δ(s, t) = (st, st)

where we denote states by s to avoid confusion.

Σ(C(S)) is the Cayley Automaton Semigroup.
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How does q act on S∗?

Let x ∈ S , α ∈ S∗, qi ∈ S . Then

q · (xα) = (qx)(qx · α), (q1 · q2) · α = q1 · (q2 · α).

For α = α1α2 . . . αn we have

q · α = (qα1)(qα1 · α2 . . . αn)

= (qα1)(qα1α2)(qα1α2 · α3 . . . α2)

...

= (qα1)(qα1α2) . . . (qα1 . . . αn)

So we can think of q as a function
q : α1α2 . . . αn 7→ (qα1)(qα1α2) . . . (qα1 . . . αn).
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Some properties

(Mintz 2009) Let S be finite. The following are equivalent:

S is aperiodic

Σ(C(S)) is finite

Σ(C(S)) is aperiodic

(Silva and Steinberg 2005) Let G be a non-trivial finite group.
Then Σ(C(G )) ∼= F|G |

(Mintz 2009) Let T ≤ S . The Σ(C(T )) divides Σ(C(S)). If T
is a non-trivial group then Σ(C(T )) ≤ Σ(C(S)).
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Zeros

Let z ∈ S be a left-zero. The z is a left-zero in Σ(C(S)).

z · α = (zα1)(zα1α2) . . . (zα1 . . . αn) = (z)n.Let a ∈ S . Then
a · α = β1β2 . . . βn. So z · a · α = z · β1β2 . . . βn = (z)n.

Consequently, Σ(C(Ln)) ∼= Ln after noting
y · α = (y)n 6= (z)n = z · α.

Let 0 ∈ S be the zero element. Then 0 is the zero element in
Σ(C(S)).

Let z ∈ S be a right zero. Then z is a right-zero in Σ(C(S)).

Consider Rn. Then
x · α = (xα1)(xα1α2) . . . (xα1 . . . αn) = α1α2 . . . αn and
y · α = α1α2 . . . αn. So x = y but x 6= y .
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When does x = y?

Lemma

Let x 6= y ∈ S . Then x = y ∈ Σ(C(S)) if and only if xa = ya for all
a ∈ S .

Proof.

(⇒) Let aα ∈ S∗. Then x · aα = (xa)(xa · α) and
y · aα = (ya)(ya · α). The first symbols of the outputs must be
equal and so xa = ya for all a ∈ S .
(⇐) Let xa = ya. Then
x · aα = (xa)(xa · α) = (ya)(ya · α) = y · aα and so x = y .
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Nilpotent Semigroups

A semigroup S is nilpotent of class n if there exists n such that
Sn = {0} and Sn−1 6= {0}. Note that such a semigroup must
necessarily contain a zero element. By definition a semigroup is
nilpotent of class 1 if and only if it is trivial.

Lemma (Cain 2009)

Let S be finite and nilpotent of class n. Then Σ(C(S)) is finite and
nilpotent of class n − 1.

Proof.

We have w1 · w2 · . . . · wn−1 · α = (w1w2 . . .wn−1α1) . . . = 0ω since
S is nilpotent of class n. Hence Σ(C(S)) is nilpotent of class at
most n − 1.
Now let w1, . . . ,wn−1 be such that w1w2 . . .wn−1 6= 0. Then
w1 · . . . · wn−2 · wn−1 = (w1w2 . . .wn−2wn−1) 6= 0ω. Hence
w1 · . . . · wn−2 6= 0. So Σ(C(S)) is nilpotent of class n − 1.
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Lemma (Cain 2009)

Let S be finite and nilpotent of class n. Then Σ(C(S)) is finite and
nilpotent of class n − 1.

Proof.

We have w1 · w2 · . . . · wn−1 · α = (w1w2 . . .wn−1α1) . . . = 0ω since
S is nilpotent of class n. Hence Σ(C(S)) is nilpotent of class at
most n − 1.

Now let w1, . . . ,wn−1 be such that w1w2 . . .wn−1 6= 0. Then
w1 · . . . · wn−2 · wn−1 = (w1w2 . . .wn−2wn−1) 6= 0ω. Hence
w1 · . . . · wn−2 6= 0. So Σ(C(S)) is nilpotent of class n − 1.
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Other known classes of Semigroups

Lemma (M 2012)

Let S be cancellative (and not necessarily finite). Then Σ(C(S)) is
free of rank equal to the order of S .

Lemma (M 2011)

Let S be a finite monogenic semigroup with a non-trivial subgroup.
Then Σ(C(S)) is a small extension of a free semigroup of rank
equal to the order of the subgroup.

Lemma (Maltcev 2008)

Let S be finite. Then Σ(C(S)) is free if and only if the minimal
ideal K of S consists of a single R-class in which every H-class is
non-trivial and there exists k such that st = skt for all s, t ∈ S .
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Self-Automaton Semigroups

S is self-automaton if S ∼= Σ(C (S)). We are particularly interested
in the map s 7→ s. Known examples:

A monoid is self automaton if and only if it is a band

Left-zero semigroups

Semilattices

Zero-unions of left-zero semigroups

Ln ∪ B where Ln acts trivially on the band B

If S is regular and self-automaton then it is a band
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Self-Automaton Semigroups cont

Theorem

Let B be a band. Then the map b 7→ b is a homomorphism.

We can classify which bands are self-automaton.

Theorem (M 2012)

Let B be a band. Then B ∼= Σ(C (B)) under the map b 7→ b if and
only if the left-regular representation of B is faithful.
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Self-Automaton Semigroups cont

So are all self-automaton semigroups bands?

NO!

The semigroup defined by the following Cayley Table is not a band
but is self-automaton:

a b c d

a b b b c
b b b b b
c c c c c
d d d d d
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An alternative construction

What if the states acted on the right of a sequence rather than the
left? This is the approach taken by Cain.

α · x = (xα1)(xα1α2)(xα1α2α3) . . .

α · (x1 · x2) = (α · x1) · x2.

Denote the semigroup generated by the states with this right
action by Π(C(S)).
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An alternative construction cont

Cain conjectures the following:

Conjecture

S ∼= Π(C(S)) if and only if S is a band in which every D-class is
square and every maximal D-class is a singleton.

How does this right action construction relate to the previously
defined left actions?

Theorem

S ∼= Π(C(S)) if and only if S is self-dual and S ∼= Σ(C(S)).
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An alternative construction cont

To tackle Cain’s conjecture we should look at self-dual
self-automaton semigroups.

Theorem (M 2013)

Let S be self-dual and self-automaton. If S2 = S then S is a band.

A complete classification of self-automaton semigroups (both
self-dual and otherwise) remains an open question.
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Thanks for listening!
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