Quasivarietes of symmetric, idempotent and
entropic groupoids

Katarzyna Matczak
Faculty of Civil Engineering, Mechanics and Petrochemistry in
Ptock
Warsaw University of Technology
09-400 Ptock, Poland

The 4th Novi Sad Algebraic Conference
Novi Sad 5-9.06.2013

K. Matczak Quasivarietes of symmetric, idempotent and entropic groug



© Introduction

© Quasivarieties of cancellative SIE-groupoids

© Deductive varieties

e Quasivarieties of SIE-groupoids

K. Matczak Quasivarietes of symmetric, idempotent and entropic groug



Introduction

A symmetric, idempotent and entropic groupoid (G, -) is an
algebra satisfying the identities

(x-y)y=x ()
XX =X, (N
x-y)-(z-t)=(x-2)-(y- 1) (E)
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Introduction

A symmetric, idempotent and entropic groupoid (G, -) is an
algebra satisfying the identities

(x-y)y=x ()
XX =X, (N
x-y)-(z-t)=(x-2)-(y- 1) (E)

Theorem B. Roszkowska-Lech

The lattice L(SIE) of all the subvarieties of the variety SIE of
symmetric, idempotent and entropic groupoids is isomorphic to the
lattice (N U {oo}, |) of positive integers ordered by the divisibility
relation with the greatest element co.
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Quasivarieties of cancellative SIE-groupoids

A SIE-groupoid (G, -) is cancellative if it satisfies the cancellation
quasi-identities

(xy =xz) = (y = 2)
() { (x = 2x) = (y = 2)
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Quasivarieties of cancellative SIE-groupoids

A SIE-groupoid (G, -) is cancellative if it satisfies the cancellation
quasi-identities

(xy =xz) = (y = 2)
() { (x = 2x) = (y = 2)

Denote by Q(«) the quasivariety of SIE-groupoids defined by the
quasi-identity o. Let Z; be the two-element left zero band with
elements 0, 1.

Denote by N(Z3) the class of SIE-groupoids with no subalgebra
isomorphic to Z,.

K. Matczak Quasivarietes of symmetric, idempotent and entropic groug



Quasivarieties of cancellative SIE-groupoids

K. Matczak Quasivarietes of symmetric, idempotent and entropic groug



Quasivarieties of cancellative SIE-groupoids

() x-y=x=x=y.

The following two classes coincide

Q(a) = N(Z).

The class SIE . of cancellative SIE-groupoids is a subquasivariety
of the variety SIE of symmetric, idempotent and entropic groupoids
satisfying the quasi-identity:

() x-y=x=x=y.
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Quasivarieties of cancellative SIE-groupoids

Belkin's construction of the lattice K(w) for the cardinal w.

Let w™ denote w U {co}. Let K(w) be the set of functions

frwt s w',

where f(o0) € {0,00} and f(oc0) = 0 implies that f(w) C w and
(i) = 0 for almost all / € w. Then K(w) is a distributive lattice
with respect to the following operations:

(fv g)(i) = max{f(i),g(i)}, (f ng)(i) = min{f (i), g(i)},

where / < oo for all | € w.
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Quasivarieties of cancellative SIE-groupoids

The lattice Lq(SIE ) of quasivarieties of cancellative symmetric,
idempotent and entropic groupoids is isomorphic to the lattice
K(w):
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Quasivarieties of cancellative SIE-groupoids

The lattice Lq(SIE ) of quasivarieties of cancellative symmetric,
idempotent and entropic groupoids is isomorphic to the lattice
K(w):

The quasivariety Q(Z) is a minimal quasivariety of the variety SIE
and a minimal quasivariety of the variety SIE . It is the minimal
quasivariety not contained in any minimal variety.
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Deductive varieties

A variety of universal algebras is called deductive if every
subquasivariety is a variety.
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Deductive varieties

A variety of universal algebras is called deductive if every
subquasivariety is a variety.

Theorem L.Hogben and C.Bergman

Let V be residually finite and of finite type, or residually and locally
finite. Then V is deductive if and only if every subdirectly
irreducible algebra in V is primitive.
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Deductive varieties

A variety of universal algebras is called deductive if every
subquasivariety is a variety.

Theorem L.Hogben and C.Bergman

Let V be residually finite and of finite type, or residually and locally
finite. Then V is deductive if and only if every subdirectly
irreducible algebra in V is primitive.

An algebra P € V is primitive iff P is finite, subdirectly
irreducible and, for all A € V, P € H(A) = P € IS(A).
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Deductive varieties

A variety V. is deductive for any odd natural numer m.
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Deductive varieties

A variety V. is deductive for any odd natural numer m.

o

Let s be a natural number. Then the variety V., is deductive iff
s=1

A
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Deductive varieties

A variety V. is deductive for any odd natural numer m.

Let s be a natural number. Then the variety V., is deductive iff
s=1

Let m be an odd natural number and s a natural number. Then the
variety V., is deductive iffs =0 or s = 1.

A variety V., for an odd natural number m and a natural number
s > 1 is not deductive.
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Deductive varieties

Subdirectly irreducible SIE-grupoids in V, were described by
J.Plonka. They are two subdirectly irreducible groupoids in V.
There are P? = ({0,1,,d},-) and P% = ({0, 1, a, b}, -) with
operations defined as follows:

- 101 )alb

101 d
, oo ol , 0/0|0|0|1
Pi=l 1] Pi=[L[L[i]1]o0
alalalala
d|d|d|d b|b|b|b|b
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Deductive varieties

Subdirectly irreducible SIE-grupoids in V, were described by
J.Plonka. They are two subdirectly irreducible groupoids in V.
There are P? = ({0,1,,d},-) and P% = ({0, 1, a, b}, -) with
operations defined as follows:

|01 ]alb
101 ]d
, oo o0l 1 , 0101001
al|a|a|a|a
djdld]d b|b|b|b|b

The following quasivarieties form a strictly increasing chain:

V,<Q(Z) s QP s Y,
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Quasivarieties of SIE-groupoids

The following quasivarieties form a strictly increasing chain:

QZ2) =V, S QZp) S ... < QZ2) 5 ...

K. Matczak Quasivarietes of symmetric, idempotent and entropic groug



Quasivarieties of SIE-groupoids

The following quasivarieties form a strictly increasing chain:

QZa) =V, < Q) S ... < QZa) < ...

Theorem

The following quasivarieties form a strictly increasing chain:

QPH QP <...<QPY) < ...,

where P?" is a subdirectly irreducible groupoid in V,, and

P ¢ V.1, for natural number s > 1.
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